Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [612,2,Mod(145,612)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(612, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("612.145");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 612.w (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 204) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
145.1 |
|
0 | 0 | 0 | −0.919353 | + | 2.21951i | 0 | −1.55193 | − | 3.74669i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
145.2 | 0 | 0 | 0 | −0.586256 | + | 1.41535i | 0 | −1.15081 | − | 2.77830i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
145.3 | 0 | 0 | 0 | 0.496466 | − | 1.19857i | 0 | 1.20907 | + | 2.91895i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
145.4 | 0 | 0 | 0 | 1.59493 | − | 3.85050i | 0 | 0.0794551 | + | 0.191822i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
253.1 | 0 | 0 | 0 | −2.83156 | + | 1.17287i | 0 | −0.119959 | − | 0.0496888i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
253.2 | 0 | 0 | 0 | −0.00271628 | + | 0.00112512i | 0 | 3.72964 | + | 1.54487i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
253.3 | 0 | 0 | 0 | 2.63370 | − | 1.09092i | 0 | −4.87029 | − | 2.01734i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
253.4 | 0 | 0 | 0 | 3.61479 | − | 1.49729i | 0 | 2.67483 | + | 1.10795i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
325.1 | 0 | 0 | 0 | −0.919353 | − | 2.21951i | 0 | −1.55193 | + | 3.74669i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
325.2 | 0 | 0 | 0 | −0.586256 | − | 1.41535i | 0 | −1.15081 | + | 2.77830i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
325.3 | 0 | 0 | 0 | 0.496466 | + | 1.19857i | 0 | 1.20907 | − | 2.91895i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
325.4 | 0 | 0 | 0 | 1.59493 | + | 3.85050i | 0 | 0.0794551 | − | 0.191822i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
433.1 | 0 | 0 | 0 | −2.83156 | − | 1.17287i | 0 | −0.119959 | + | 0.0496888i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
433.2 | 0 | 0 | 0 | −0.00271628 | − | 0.00112512i | 0 | 3.72964 | − | 1.54487i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
433.3 | 0 | 0 | 0 | 2.63370 | + | 1.09092i | 0 | −4.87029 | + | 2.01734i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
433.4 | 0 | 0 | 0 | 3.61479 | + | 1.49729i | 0 | 2.67483 | − | 1.10795i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.d | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 612.2.w.c | 16 | |
3.b | odd | 2 | 1 | 204.2.o.a | ✓ | 16 | |
12.b | even | 2 | 1 | 816.2.bq.d | 16 | ||
17.d | even | 8 | 1 | inner | 612.2.w.c | 16 | |
51.g | odd | 8 | 1 | 204.2.o.a | ✓ | 16 | |
51.i | even | 16 | 1 | 3468.2.a.o | 8 | ||
51.i | even | 16 | 1 | 3468.2.a.p | 8 | ||
51.i | even | 16 | 2 | 3468.2.b.h | 16 | ||
51.i | even | 16 | 2 | 3468.2.j.h | 16 | ||
51.i | even | 16 | 2 | 3468.2.j.i | 16 | ||
204.p | even | 8 | 1 | 816.2.bq.d | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
204.2.o.a | ✓ | 16 | 3.b | odd | 2 | 1 | |
204.2.o.a | ✓ | 16 | 51.g | odd | 8 | 1 | |
612.2.w.c | 16 | 1.a | even | 1 | 1 | trivial | |
612.2.w.c | 16 | 17.d | even | 8 | 1 | inner | |
816.2.bq.d | 16 | 12.b | even | 2 | 1 | ||
816.2.bq.d | 16 | 204.p | even | 8 | 1 | ||
3468.2.a.o | 8 | 51.i | even | 16 | 1 | ||
3468.2.a.p | 8 | 51.i | even | 16 | 1 | ||
3468.2.b.h | 16 | 51.i | even | 16 | 2 | ||
3468.2.j.h | 16 | 51.i | even | 16 | 2 | ||
3468.2.j.i | 16 | 51.i | even | 16 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .