Properties

Label 612.2.w.c
Level 612612
Weight 22
Character orbit 612.w
Analytic conductor 4.8874.887
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [612,2,Mod(145,612)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(612, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("612.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 612=223217 612 = 2^{2} \cdot 3^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 612.w (of order 88, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.886844603704.88684460370
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ8)\Q(\zeta_{8})
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+60x14+1434x12+17508x10+116445x8+414440x6+715372x4+462752x2+4 x^{16} + 60x^{14} + 1434x^{12} + 17508x^{10} + 116445x^{8} + 414440x^{6} + 715372x^{4} + 462752x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 25 2^{5}
Twist minimal: no (minimal twist has level 204)
Sato-Tate group: SU(2)[C8]\mathrm{SU}(2)[C_{8}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β15+β14β12+1)q5+(β15β14+β12++1)q7+(β13+β8++β2)q11+(β15+β12β10++1)q13++(β14β132β11+1)q97+O(q100) q + (\beta_{15} + \beta_{14} - \beta_{12} + \cdots - 1) q^{5} + ( - \beta_{15} - \beta_{14} + \beta_{12} + \cdots + 1) q^{7} + (\beta_{13} + \beta_{8} + \cdots + \beta_{2}) q^{11} + ( - \beta_{15} + \beta_{12} - \beta_{10} + \cdots + 1) q^{13}+ \cdots + ( - \beta_{14} - \beta_{13} - 2 \beta_{11} + \cdots - 1) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+8q58q1124q17+8q198q23+8q25+24q2924q31+32q358q37+32q41+24q43+24q4924q53+32q5916q61+32q65+24q97+O(q100) 16 q + 8 q^{5} - 8 q^{11} - 24 q^{17} + 8 q^{19} - 8 q^{23} + 8 q^{25} + 24 q^{29} - 24 q^{31} + 32 q^{35} - 8 q^{37} + 32 q^{41} + 24 q^{43} + 24 q^{49} - 24 q^{53} + 32 q^{59} - 16 q^{61} + 32 q^{65}+ \cdots - 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+60x14+1434x12+17508x10+116445x8+414440x6+715372x4+462752x2+4 x^{16} + 60x^{14} + 1434x^{12} + 17508x^{10} + 116445x^{8} + 414440x^{6} + 715372x^{4} + 462752x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== (10183231ν14730091944ν1220013985161ν10264194956239ν8++1177839845590)/450248976368 ( - 10183231 \nu^{14} - 730091944 \nu^{12} - 20013985161 \nu^{10} - 264194956239 \nu^{8} + \cdots + 1177839845590 ) / 450248976368 Copy content Toggle raw display
β2\beta_{2}== (86362753ν144947624218ν12110704440654ν101225172767250ν8++834139859368)/450248976368 ( - 86362753 \nu^{14} - 4947624218 \nu^{12} - 110704440654 \nu^{10} - 1225172767250 \nu^{8} + \cdots + 834139859368 ) / 450248976368 Copy content Toggle raw display
β3\beta_{3}== (28803044ν15766785ν141725343305ν1341712081ν12+37457113132)/52970467808 ( - 28803044 \nu^{15} - 766785 \nu^{14} - 1725343305 \nu^{13} - 41712081 \nu^{12} + \cdots - 37457113132 ) / 52970467808 Copy content Toggle raw display
β4\beta_{4}== (28803044ν15+766785ν141725343305ν13+41712081ν12++37457113132)/52970467808 ( - 28803044 \nu^{15} + 766785 \nu^{14} - 1725343305 \nu^{13} + 41712081 \nu^{12} + \cdots + 37457113132 ) / 52970467808 Copy content Toggle raw display
β5\beta_{5}== (470397100ν15+94265158ν14+28257173258ν13+5215141977ν12++691188026456)/900497952736 ( 470397100 \nu^{15} + 94265158 \nu^{14} + 28257173258 \nu^{13} + 5215141977 \nu^{12} + \cdots + 691188026456 ) / 900497952736 Copy content Toggle raw display
β6\beta_{6}== (470397100ν1594265158ν14+28257173258ν135215141977ν12+691188026456)/900497952736 ( 470397100 \nu^{15} - 94265158 \nu^{14} + 28257173258 \nu^{13} - 5215141977 \nu^{12} + \cdots - 691188026456 ) / 900497952736 Copy content Toggle raw display
β7\beta_{7}== (1789ν15+107628ν13+2581674ν11+31676582ν9+212104547ν7++874905524ν)/2572256 ( 1789 \nu^{15} + 107628 \nu^{13} + 2581674 \nu^{11} + 31676582 \nu^{9} + 212104547 \nu^{7} + \cdots + 874905524 \nu ) / 2572256 Copy content Toggle raw display
β8\beta_{8}== (630241980ν15+30183059ν14+37723759683ν13+1769619153ν12+345529433242)/900497952736 ( 630241980 \nu^{15} + 30183059 \nu^{14} + 37723759683 \nu^{13} + 1769619153 \nu^{12} + \cdots - 345529433242 ) / 900497952736 Copy content Toggle raw display
β9\beta_{9}== (630241980ν1530183059ν14+37723759683ν131769619153ν12++345529433242)/900497952736 ( 630241980 \nu^{15} - 30183059 \nu^{14} + 37723759683 \nu^{13} - 1769619153 \nu^{12} + \cdots + 345529433242 ) / 900497952736 Copy content Toggle raw display
β10\beta_{10}== (384330901ν155768030ν1423059716203ν13333947021ν12++487357836308)/450248976368 ( - 384330901 \nu^{15} - 5768030 \nu^{14} - 23059716203 \nu^{13} - 333947021 \nu^{12} + \cdots + 487357836308 ) / 450248976368 Copy content Toggle raw display
β11\beta_{11}== (384330901ν155768030ν14+23059716203ν13333947021ν12++487357836308)/450248976368 ( 384330901 \nu^{15} - 5768030 \nu^{14} + 23059716203 \nu^{13} - 333947021 \nu^{12} + \cdots + 487357836308 ) / 450248976368 Copy content Toggle raw display
β12\beta_{12}== (848959971ν15+88634985ν14+50982942440ν13+5266939953ν12++1180083186368)/900497952736 ( 848959971 \nu^{15} + 88634985 \nu^{14} + 50982942440 \nu^{13} + 5266939953 \nu^{12} + \cdots + 1180083186368 ) / 900497952736 Copy content Toggle raw display
β13\beta_{13}== (841692656ν15+5768030ν1450607784084ν13+333947021ν12+487357836308)/450248976368 ( - 841692656 \nu^{15} + 5768030 \nu^{14} - 50607784084 \nu^{13} + 333947021 \nu^{12} + \cdots - 487357836308 ) / 450248976368 Copy content Toggle raw display
β14\beta_{14}== (1997867746ν15153784274ν14119731104237ν138466451041ν12++2719728082012)/900497952736 ( - 1997867746 \nu^{15} - 153784274 \nu^{14} - 119731104237 \nu^{13} - 8466451041 \nu^{12} + \cdots + 2719728082012 ) / 900497952736 Copy content Toggle raw display
β15\beta_{15}== (1997867746ν15153784274ν14+119731104237ν138466451041ν12++2719728082012)/900497952736 ( 1997867746 \nu^{15} - 153784274 \nu^{14} + 119731104237 \nu^{13} - 8466451041 \nu^{12} + \cdots + 2719728082012 ) / 900497952736 Copy content Toggle raw display
ν\nu== (2β14+2β12β11β102β92β82β7++2)/2 ( - 2 \beta_{14} + 2 \beta_{12} - \beta_{11} - \beta_{10} - 2 \beta_{9} - 2 \beta_{8} - 2 \beta_{7} + \cdots + 2 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β15+β14+β11+β10+2β92β8β4+β3+8 \beta_{15} + \beta_{14} + \beta_{11} + \beta_{10} + 2 \beta_{9} - 2 \beta_{8} - \beta_{4} + \beta_{3} + \cdots - 8 Copy content Toggle raw display
ν3\nu^{3}== (6β15+24β1430β12+19β11+11β10+24β9+24β8+30)/2 ( 6 \beta_{15} + 24 \beta_{14} - 30 \beta_{12} + 19 \beta_{11} + 11 \beta_{10} + 24 \beta_{9} + 24 \beta_{8} + \cdots - 30 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== 14β1514β1413β1113β1034β9+34β8++100 - 14 \beta_{15} - 14 \beta_{14} - 13 \beta_{11} - 13 \beta_{10} - 34 \beta_{9} + 34 \beta_{8} + \cdots + 100 Copy content Toggle raw display
ν5\nu^{5}== (112β15334β1424β13+446β12339β11131β10++446)/2 ( - 112 \beta_{15} - 334 \beta_{14} - 24 \beta_{13} + 446 \beta_{12} - 339 \beta_{11} - 131 \beta_{10} + \cdots + 446 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== 208β15+208β14+172β11+172β10+546β9546β8+1438 208 \beta_{15} + 208 \beta_{14} + 172 \beta_{11} + 172 \beta_{10} + 546 \beta_{9} - 546 \beta_{8} + \cdots - 1438 Copy content Toggle raw display
ν7\nu^{7}== (1916β15+5074β14+724β136990β12+5949β11+1765β10+6990)/2 ( 1916 \beta_{15} + 5074 \beta_{14} + 724 \beta_{13} - 6990 \beta_{12} + 5949 \beta_{11} + 1765 \beta_{10} + \cdots - 6990 ) / 2 Copy content Toggle raw display
ν8\nu^{8}== 3222β153222β142217β112217β108606β9+8606β8++22070 - 3222 \beta_{15} - 3222 \beta_{14} - 2217 \beta_{11} - 2217 \beta_{10} - 8606 \beta_{9} + 8606 \beta_{8} + \cdots + 22070 Copy content Toggle raw display
ν9\nu^{9}== (32568β1580942β1416624β13+113510β12103867β11++113510)/2 ( - 32568 \beta_{15} - 80942 \beta_{14} - 16624 \beta_{13} + 113510 \beta_{12} - 103867 \beta_{11} + \cdots + 113510 ) / 2 Copy content Toggle raw display
ν10\nu^{10}== 51210β15+51210β14+27368β11+27368β10+134274β9+350586 51210 \beta_{15} + 51210 \beta_{14} + 27368 \beta_{11} + 27368 \beta_{10} + 134274 \beta_{9} + \cdots - 350586 Copy content Toggle raw display
ν11\nu^{11}== (554016β15+1326254β14+347652β131880270β12+1810189β11+1880270)/2 ( 554016 \beta_{15} + 1326254 \beta_{14} + 347652 \beta_{13} - 1880270 \beta_{12} + 1810189 \beta_{11} + \cdots - 1880270 ) / 2 Copy content Toggle raw display
ν12\nu^{12}== 826054β15826054β14312587β11312587β102082902β9++5678658 - 826054 \beta_{15} - 826054 \beta_{14} - 312587 \beta_{11} - 312587 \beta_{10} - 2082902 \beta_{9} + \cdots + 5678658 Copy content Toggle raw display
ν13\nu^{13}== (9438728β1522060974β146942264β13+31499702β1231526063β11++31499702)/2 ( - 9438728 \beta_{15} - 22060974 \beta_{14} - 6942264 \beta_{13} + 31499702 \beta_{12} - 31526063 \beta_{11} + \cdots + 31499702 ) / 2 Copy content Toggle raw display
ν14\nu^{14}== 13442558β15+13442558β14+3020394β11+3020394β10+32213074β9+93075922 13442558 \beta_{15} + 13442558 \beta_{14} + 3020394 \beta_{11} + 3020394 \beta_{10} + 32213074 \beta_{9} + \cdots - 93075922 Copy content Toggle raw display
ν15\nu^{15}== (161081800β15+370280198β14+134696124β13531361998β12+531361998)/2 ( 161081800 \beta_{15} + 370280198 \beta_{14} + 134696124 \beta_{13} - 531361998 \beta_{12} + \cdots - 531361998 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/612Z)×\left(\mathbb{Z}/612\mathbb{Z}\right)^\times.

nn 3737 137137 307307
χ(n)\chi(n) β3\beta_{3} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
145.1
4.16775i
1.29733i
1.53196i
2.40238i
3.91262i
2.85070i
0.00294008i
3.06486i
4.16775i
1.29733i
1.53196i
2.40238i
3.91262i
2.85070i
0.00294008i
3.06486i
0 0 0 −0.919353 + 2.21951i 0 −1.55193 3.74669i 0 0 0
145.2 0 0 0 −0.586256 + 1.41535i 0 −1.15081 2.77830i 0 0 0
145.3 0 0 0 0.496466 1.19857i 0 1.20907 + 2.91895i 0 0 0
145.4 0 0 0 1.59493 3.85050i 0 0.0794551 + 0.191822i 0 0 0
253.1 0 0 0 −2.83156 + 1.17287i 0 −0.119959 0.0496888i 0 0 0
253.2 0 0 0 −0.00271628 + 0.00112512i 0 3.72964 + 1.54487i 0 0 0
253.3 0 0 0 2.63370 1.09092i 0 −4.87029 2.01734i 0 0 0
253.4 0 0 0 3.61479 1.49729i 0 2.67483 + 1.10795i 0 0 0
325.1 0 0 0 −0.919353 2.21951i 0 −1.55193 + 3.74669i 0 0 0
325.2 0 0 0 −0.586256 1.41535i 0 −1.15081 + 2.77830i 0 0 0
325.3 0 0 0 0.496466 + 1.19857i 0 1.20907 2.91895i 0 0 0
325.4 0 0 0 1.59493 + 3.85050i 0 0.0794551 0.191822i 0 0 0
433.1 0 0 0 −2.83156 1.17287i 0 −0.119959 + 0.0496888i 0 0 0
433.2 0 0 0 −0.00271628 0.00112512i 0 3.72964 1.54487i 0 0 0
433.3 0 0 0 2.63370 + 1.09092i 0 −4.87029 + 2.01734i 0 0 0
433.4 0 0 0 3.61479 + 1.49729i 0 2.67483 1.10795i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 145.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.d even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 612.2.w.c 16
3.b odd 2 1 204.2.o.a 16
12.b even 2 1 816.2.bq.d 16
17.d even 8 1 inner 612.2.w.c 16
51.g odd 8 1 204.2.o.a 16
51.i even 16 1 3468.2.a.o 8
51.i even 16 1 3468.2.a.p 8
51.i even 16 2 3468.2.b.h 16
51.i even 16 2 3468.2.j.h 16
51.i even 16 2 3468.2.j.i 16
204.p even 8 1 816.2.bq.d 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
204.2.o.a 16 3.b odd 2 1
204.2.o.a 16 51.g odd 8 1
612.2.w.c 16 1.a even 1 1 trivial
612.2.w.c 16 17.d even 8 1 inner
816.2.bq.d 16 12.b even 2 1
816.2.bq.d 16 204.p even 8 1
3468.2.a.o 8 51.i even 16 1
3468.2.a.p 8 51.i even 16 1
3468.2.b.h 16 51.i even 16 2
3468.2.j.h 16 51.i even 16 2
3468.2.j.i 16 51.i even 16 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5168T515+28T51432T513120T512+296T511+1344T510++4 T_{5}^{16} - 8 T_{5}^{15} + 28 T_{5}^{14} - 32 T_{5}^{13} - 120 T_{5}^{12} + 296 T_{5}^{11} + 1344 T_{5}^{10} + \cdots + 4 acting on S2new(612,[χ])S_{2}^{\mathrm{new}}(612, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16 T^{16} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 T168T15++4 T^{16} - 8 T^{15} + \cdots + 4 Copy content Toggle raw display
77 T1612T14++4096 T^{16} - 12 T^{14} + \cdots + 4096 Copy content Toggle raw display
1111 T16+8T15++4734976 T^{16} + 8 T^{15} + \cdots + 4734976 Copy content Toggle raw display
1313 T16++121264144 T^{16} + \cdots + 121264144 Copy content Toggle raw display
1717 T16++6975757441 T^{16} + \cdots + 6975757441 Copy content Toggle raw display
1919 T16++4421718016 T^{16} + \cdots + 4421718016 Copy content Toggle raw display
2323 T16++2264237056 T^{16} + \cdots + 2264237056 Copy content Toggle raw display
2929 T16++14168617024 T^{16} + \cdots + 14168617024 Copy content Toggle raw display
3131 T16+24T15++18939904 T^{16} + 24 T^{15} + \cdots + 18939904 Copy content Toggle raw display
3737 T16+8T15++2347024 T^{16} + 8 T^{15} + \cdots + 2347024 Copy content Toggle raw display
4141 T16++48146014084 T^{16} + \cdots + 48146014084 Copy content Toggle raw display
4343 T16++18339659776 T^{16} + \cdots + 18339659776 Copy content Toggle raw display
4747 T16++303038464 T^{16} + \cdots + 303038464 Copy content Toggle raw display
5353 T16+24T15++1183744 T^{16} + 24 T^{15} + \cdots + 1183744 Copy content Toggle raw display
5959 T1632T15++4734976 T^{16} - 32 T^{15} + \cdots + 4734976 Copy content Toggle raw display
6161 T16++2539777694224 T^{16} + \cdots + 2539777694224 Copy content Toggle raw display
6767 (T8+8T7+1482496)2 (T^{8} + 8 T^{7} + \cdots - 1482496)^{2} Copy content Toggle raw display
7171 T16+144T14++39337984 T^{16} + 144 T^{14} + \cdots + 39337984 Copy content Toggle raw display
7373 T16++502805791744 T^{16} + \cdots + 502805791744 Copy content Toggle raw display
7979 T16++58866405376 T^{16} + \cdots + 58866405376 Copy content Toggle raw display
8383 T16++34 ⁣ ⁣04 T^{16} + \cdots + 34\!\cdots\!04 Copy content Toggle raw display
8989 T16++641585799247936 T^{16} + \cdots + 641585799247936 Copy content Toggle raw display
9797 T16++1671373209856 T^{16} + \cdots + 1671373209856 Copy content Toggle raw display
show more
show less