Properties

Label 612.2.w.c
Level $612$
Weight $2$
Character orbit 612.w
Analytic conductor $4.887$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [612,2,Mod(145,612)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(612, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("612.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 612 = 2^{2} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 612.w (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.88684460370\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 60x^{14} + 1434x^{12} + 17508x^{10} + 116445x^{8} + 414440x^{6} + 715372x^{4} + 462752x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 204)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{15} + \beta_{14} - \beta_{12} + \cdots - 1) q^{5} + ( - \beta_{15} - \beta_{14} + \beta_{12} + \cdots + 1) q^{7} + (\beta_{13} + \beta_{8} + \cdots + \beta_{2}) q^{11} + ( - \beta_{15} + \beta_{12} - \beta_{10} + \cdots + 1) q^{13}+ \cdots + ( - \beta_{14} - \beta_{13} - 2 \beta_{11} + \cdots - 1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{5} - 8 q^{11} - 24 q^{17} + 8 q^{19} - 8 q^{23} + 8 q^{25} + 24 q^{29} - 24 q^{31} + 32 q^{35} - 8 q^{37} + 32 q^{41} + 24 q^{43} + 24 q^{49} - 24 q^{53} + 32 q^{59} - 16 q^{61} + 32 q^{65}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 60x^{14} + 1434x^{12} + 17508x^{10} + 116445x^{8} + 414440x^{6} + 715372x^{4} + 462752x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 10183231 \nu^{14} - 730091944 \nu^{12} - 20013985161 \nu^{10} - 264194956239 \nu^{8} + \cdots + 1177839845590 ) / 450248976368 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 86362753 \nu^{14} - 4947624218 \nu^{12} - 110704440654 \nu^{10} - 1225172767250 \nu^{8} + \cdots + 834139859368 ) / 450248976368 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 28803044 \nu^{15} - 766785 \nu^{14} - 1725343305 \nu^{13} - 41712081 \nu^{12} + \cdots - 37457113132 ) / 52970467808 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 28803044 \nu^{15} + 766785 \nu^{14} - 1725343305 \nu^{13} + 41712081 \nu^{12} + \cdots + 37457113132 ) / 52970467808 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 470397100 \nu^{15} + 94265158 \nu^{14} + 28257173258 \nu^{13} + 5215141977 \nu^{12} + \cdots + 691188026456 ) / 900497952736 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 470397100 \nu^{15} - 94265158 \nu^{14} + 28257173258 \nu^{13} - 5215141977 \nu^{12} + \cdots - 691188026456 ) / 900497952736 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 1789 \nu^{15} + 107628 \nu^{13} + 2581674 \nu^{11} + 31676582 \nu^{9} + 212104547 \nu^{7} + \cdots + 874905524 \nu ) / 2572256 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 630241980 \nu^{15} + 30183059 \nu^{14} + 37723759683 \nu^{13} + 1769619153 \nu^{12} + \cdots - 345529433242 ) / 900497952736 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 630241980 \nu^{15} - 30183059 \nu^{14} + 37723759683 \nu^{13} - 1769619153 \nu^{12} + \cdots + 345529433242 ) / 900497952736 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 384330901 \nu^{15} - 5768030 \nu^{14} - 23059716203 \nu^{13} - 333947021 \nu^{12} + \cdots + 487357836308 ) / 450248976368 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 384330901 \nu^{15} - 5768030 \nu^{14} + 23059716203 \nu^{13} - 333947021 \nu^{12} + \cdots + 487357836308 ) / 450248976368 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 848959971 \nu^{15} + 88634985 \nu^{14} + 50982942440 \nu^{13} + 5266939953 \nu^{12} + \cdots + 1180083186368 ) / 900497952736 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 841692656 \nu^{15} + 5768030 \nu^{14} - 50607784084 \nu^{13} + 333947021 \nu^{12} + \cdots - 487357836308 ) / 450248976368 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 1997867746 \nu^{15} - 153784274 \nu^{14} - 119731104237 \nu^{13} - 8466451041 \nu^{12} + \cdots + 2719728082012 ) / 900497952736 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 1997867746 \nu^{15} - 153784274 \nu^{14} + 119731104237 \nu^{13} - 8466451041 \nu^{12} + \cdots + 2719728082012 ) / 900497952736 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( - 2 \beta_{14} + 2 \beta_{12} - \beta_{11} - \beta_{10} - 2 \beta_{9} - 2 \beta_{8} - 2 \beta_{7} + \cdots + 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{15} + \beta_{14} + \beta_{11} + \beta_{10} + 2 \beta_{9} - 2 \beta_{8} - \beta_{4} + \beta_{3} + \cdots - 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 6 \beta_{15} + 24 \beta_{14} - 30 \beta_{12} + 19 \beta_{11} + 11 \beta_{10} + 24 \beta_{9} + 24 \beta_{8} + \cdots - 30 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 14 \beta_{15} - 14 \beta_{14} - 13 \beta_{11} - 13 \beta_{10} - 34 \beta_{9} + 34 \beta_{8} + \cdots + 100 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 112 \beta_{15} - 334 \beta_{14} - 24 \beta_{13} + 446 \beta_{12} - 339 \beta_{11} - 131 \beta_{10} + \cdots + 446 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 208 \beta_{15} + 208 \beta_{14} + 172 \beta_{11} + 172 \beta_{10} + 546 \beta_{9} - 546 \beta_{8} + \cdots - 1438 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 1916 \beta_{15} + 5074 \beta_{14} + 724 \beta_{13} - 6990 \beta_{12} + 5949 \beta_{11} + 1765 \beta_{10} + \cdots - 6990 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 3222 \beta_{15} - 3222 \beta_{14} - 2217 \beta_{11} - 2217 \beta_{10} - 8606 \beta_{9} + 8606 \beta_{8} + \cdots + 22070 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 32568 \beta_{15} - 80942 \beta_{14} - 16624 \beta_{13} + 113510 \beta_{12} - 103867 \beta_{11} + \cdots + 113510 ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 51210 \beta_{15} + 51210 \beta_{14} + 27368 \beta_{11} + 27368 \beta_{10} + 134274 \beta_{9} + \cdots - 350586 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 554016 \beta_{15} + 1326254 \beta_{14} + 347652 \beta_{13} - 1880270 \beta_{12} + 1810189 \beta_{11} + \cdots - 1880270 ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 826054 \beta_{15} - 826054 \beta_{14} - 312587 \beta_{11} - 312587 \beta_{10} - 2082902 \beta_{9} + \cdots + 5678658 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 9438728 \beta_{15} - 22060974 \beta_{14} - 6942264 \beta_{13} + 31499702 \beta_{12} - 31526063 \beta_{11} + \cdots + 31499702 ) / 2 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 13442558 \beta_{15} + 13442558 \beta_{14} + 3020394 \beta_{11} + 3020394 \beta_{10} + 32213074 \beta_{9} + \cdots - 93075922 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 161081800 \beta_{15} + 370280198 \beta_{14} + 134696124 \beta_{13} - 531361998 \beta_{12} + \cdots - 531361998 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/612\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\) \(307\)
\(\chi(n)\) \(\beta_{3}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
145.1
4.16775i
1.29733i
1.53196i
2.40238i
3.91262i
2.85070i
0.00294008i
3.06486i
4.16775i
1.29733i
1.53196i
2.40238i
3.91262i
2.85070i
0.00294008i
3.06486i
0 0 0 −0.919353 + 2.21951i 0 −1.55193 3.74669i 0 0 0
145.2 0 0 0 −0.586256 + 1.41535i 0 −1.15081 2.77830i 0 0 0
145.3 0 0 0 0.496466 1.19857i 0 1.20907 + 2.91895i 0 0 0
145.4 0 0 0 1.59493 3.85050i 0 0.0794551 + 0.191822i 0 0 0
253.1 0 0 0 −2.83156 + 1.17287i 0 −0.119959 0.0496888i 0 0 0
253.2 0 0 0 −0.00271628 + 0.00112512i 0 3.72964 + 1.54487i 0 0 0
253.3 0 0 0 2.63370 1.09092i 0 −4.87029 2.01734i 0 0 0
253.4 0 0 0 3.61479 1.49729i 0 2.67483 + 1.10795i 0 0 0
325.1 0 0 0 −0.919353 2.21951i 0 −1.55193 + 3.74669i 0 0 0
325.2 0 0 0 −0.586256 1.41535i 0 −1.15081 + 2.77830i 0 0 0
325.3 0 0 0 0.496466 + 1.19857i 0 1.20907 2.91895i 0 0 0
325.4 0 0 0 1.59493 + 3.85050i 0 0.0794551 0.191822i 0 0 0
433.1 0 0 0 −2.83156 1.17287i 0 −0.119959 + 0.0496888i 0 0 0
433.2 0 0 0 −0.00271628 0.00112512i 0 3.72964 1.54487i 0 0 0
433.3 0 0 0 2.63370 + 1.09092i 0 −4.87029 + 2.01734i 0 0 0
433.4 0 0 0 3.61479 + 1.49729i 0 2.67483 1.10795i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 145.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.d even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 612.2.w.c 16
3.b odd 2 1 204.2.o.a 16
12.b even 2 1 816.2.bq.d 16
17.d even 8 1 inner 612.2.w.c 16
51.g odd 8 1 204.2.o.a 16
51.i even 16 1 3468.2.a.o 8
51.i even 16 1 3468.2.a.p 8
51.i even 16 2 3468.2.b.h 16
51.i even 16 2 3468.2.j.h 16
51.i even 16 2 3468.2.j.i 16
204.p even 8 1 816.2.bq.d 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
204.2.o.a 16 3.b odd 2 1
204.2.o.a 16 51.g odd 8 1
612.2.w.c 16 1.a even 1 1 trivial
612.2.w.c 16 17.d even 8 1 inner
816.2.bq.d 16 12.b even 2 1
816.2.bq.d 16 204.p even 8 1
3468.2.a.o 8 51.i even 16 1
3468.2.a.p 8 51.i even 16 1
3468.2.b.h 16 51.i even 16 2
3468.2.j.h 16 51.i even 16 2
3468.2.j.i 16 51.i even 16 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{16} - 8 T_{5}^{15} + 28 T_{5}^{14} - 32 T_{5}^{13} - 120 T_{5}^{12} + 296 T_{5}^{11} + 1344 T_{5}^{10} + \cdots + 4 \) acting on \(S_{2}^{\mathrm{new}}(612, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( T^{16} - 8 T^{15} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{16} - 12 T^{14} + \cdots + 4096 \) Copy content Toggle raw display
$11$ \( T^{16} + 8 T^{15} + \cdots + 4734976 \) Copy content Toggle raw display
$13$ \( T^{16} + \cdots + 121264144 \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots + 6975757441 \) Copy content Toggle raw display
$19$ \( T^{16} + \cdots + 4421718016 \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 2264237056 \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots + 14168617024 \) Copy content Toggle raw display
$31$ \( T^{16} + 24 T^{15} + \cdots + 18939904 \) Copy content Toggle raw display
$37$ \( T^{16} + 8 T^{15} + \cdots + 2347024 \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 48146014084 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 18339659776 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 303038464 \) Copy content Toggle raw display
$53$ \( T^{16} + 24 T^{15} + \cdots + 1183744 \) Copy content Toggle raw display
$59$ \( T^{16} - 32 T^{15} + \cdots + 4734976 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 2539777694224 \) Copy content Toggle raw display
$67$ \( (T^{8} + 8 T^{7} + \cdots - 1482496)^{2} \) Copy content Toggle raw display
$71$ \( T^{16} + 144 T^{14} + \cdots + 39337984 \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 502805791744 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 58866405376 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 34\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 641585799247936 \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 1671373209856 \) Copy content Toggle raw display
show more
show less