L(s) = 1 | + (0.665 + 2.04i)3-s + (2.20 + 1.60i)5-s + (−0.309 + 0.951i)7-s + (−1.32 + 0.962i)9-s + (2.37 + 2.31i)11-s + (0.966 − 0.702i)13-s + (−1.81 + 5.58i)15-s + (−3.00 − 2.18i)17-s + (−0.701 − 2.15i)19-s − 2.15·21-s + 1.70·23-s + (0.751 + 2.31i)25-s + (2.37 + 1.72i)27-s + (1.38 − 4.25i)29-s + (−5.51 + 4.00i)31-s + ⋯ |
L(s) = 1 | + (0.384 + 1.18i)3-s + (0.986 + 0.716i)5-s + (−0.116 + 0.359i)7-s + (−0.441 + 0.320i)9-s + (0.717 + 0.696i)11-s + (0.268 − 0.194i)13-s + (−0.468 + 1.44i)15-s + (−0.728 − 0.529i)17-s + (−0.160 − 0.495i)19-s − 0.469·21-s + 0.354·23-s + (0.150 + 0.462i)25-s + (0.456 + 0.332i)27-s + (0.257 − 0.791i)29-s + (−0.990 + 0.719i)31-s + ⋯ |
Λ(s)=(=(616s/2ΓC(s)L(s)(−0.147−0.989i)Λ(2−s)
Λ(s)=(=(616s/2ΓC(s+1/2)L(s)(−0.147−0.989i)Λ(1−s)
Degree: |
2 |
Conductor: |
616
= 23⋅7⋅11
|
Sign: |
−0.147−0.989i
|
Analytic conductor: |
4.91878 |
Root analytic conductor: |
2.21783 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ616(113,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 616, ( :1/2), −0.147−0.989i)
|
Particular Values
L(1) |
≈ |
1.30217+1.51020i |
L(21) |
≈ |
1.30217+1.51020i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(0.309−0.951i)T |
| 11 | 1+(−2.37−2.31i)T |
good | 3 | 1+(−0.665−2.04i)T+(−2.42+1.76i)T2 |
| 5 | 1+(−2.20−1.60i)T+(1.54+4.75i)T2 |
| 13 | 1+(−0.966+0.702i)T+(4.01−12.3i)T2 |
| 17 | 1+(3.00+2.18i)T+(5.25+16.1i)T2 |
| 19 | 1+(0.701+2.15i)T+(−15.3+11.1i)T2 |
| 23 | 1−1.70T+23T2 |
| 29 | 1+(−1.38+4.25i)T+(−23.4−17.0i)T2 |
| 31 | 1+(5.51−4.00i)T+(9.57−29.4i)T2 |
| 37 | 1+(−1.79+5.53i)T+(−29.9−21.7i)T2 |
| 41 | 1+(0.488+1.50i)T+(−33.1+24.0i)T2 |
| 43 | 1+9.77T+43T2 |
| 47 | 1+(0.129+0.399i)T+(−38.0+27.6i)T2 |
| 53 | 1+(−1.64+1.19i)T+(16.3−50.4i)T2 |
| 59 | 1+(2.39−7.36i)T+(−47.7−34.6i)T2 |
| 61 | 1+(4.35+3.16i)T+(18.8+58.0i)T2 |
| 67 | 1−8.76T+67T2 |
| 71 | 1+(1.26+0.918i)T+(21.9+67.5i)T2 |
| 73 | 1+(3.96−12.2i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−11.7+8.55i)T+(24.4−75.1i)T2 |
| 83 | 1+(−7.57−5.50i)T+(25.6+78.9i)T2 |
| 89 | 1+4.67T+89T2 |
| 97 | 1+(−9.56+6.95i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.63310631771328244853608809635, −9.895206103633825619537556286169, −9.316386303744147270749332436522, −8.669441717869679722009520283870, −7.12298918183202790273104590239, −6.38365000892134938788607989660, −5.25370202898430171824920172212, −4.28054051783165983437444087479, −3.17259028702294530491834017962, −2.09407558287129768473336050222,
1.19365066101925706676558967915, 2.01277474078249752843598137209, 3.55040682242966118322683275179, 4.93062608999479818856335364843, 6.17553368541704022478902061621, 6.63913476690318699595997519206, 7.80451680752480914677197293340, 8.656288320573451666801136682192, 9.272371604051189424712416242173, 10.33906043171952564823802785772