L(s) = 1 | + (0.665 + 2.04i)3-s + (2.20 + 1.60i)5-s + (−0.309 + 0.951i)7-s + (−1.32 + 0.962i)9-s + (2.37 + 2.31i)11-s + (0.966 − 0.702i)13-s + (−1.81 + 5.58i)15-s + (−3.00 − 2.18i)17-s + (−0.701 − 2.15i)19-s − 2.15·21-s + 1.70·23-s + (0.751 + 2.31i)25-s + (2.37 + 1.72i)27-s + (1.38 − 4.25i)29-s + (−5.51 + 4.00i)31-s + ⋯ |
L(s) = 1 | + (0.384 + 1.18i)3-s + (0.986 + 0.716i)5-s + (−0.116 + 0.359i)7-s + (−0.441 + 0.320i)9-s + (0.717 + 0.696i)11-s + (0.268 − 0.194i)13-s + (−0.468 + 1.44i)15-s + (−0.728 − 0.529i)17-s + (−0.160 − 0.495i)19-s − 0.469·21-s + 0.354·23-s + (0.150 + 0.462i)25-s + (0.456 + 0.332i)27-s + (0.257 − 0.791i)29-s + (−0.990 + 0.719i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.147 - 0.989i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.147 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.30217 + 1.51020i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.30217 + 1.51020i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (-2.37 - 2.31i)T \) |
good | 3 | \( 1 + (-0.665 - 2.04i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (-2.20 - 1.60i)T + (1.54 + 4.75i)T^{2} \) |
| 13 | \( 1 + (-0.966 + 0.702i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (3.00 + 2.18i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (0.701 + 2.15i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 1.70T + 23T^{2} \) |
| 29 | \( 1 + (-1.38 + 4.25i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (5.51 - 4.00i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.79 + 5.53i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (0.488 + 1.50i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 9.77T + 43T^{2} \) |
| 47 | \( 1 + (0.129 + 0.399i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-1.64 + 1.19i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (2.39 - 7.36i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (4.35 + 3.16i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 8.76T + 67T^{2} \) |
| 71 | \( 1 + (1.26 + 0.918i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (3.96 - 12.2i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-11.7 + 8.55i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-7.57 - 5.50i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 4.67T + 89T^{2} \) |
| 97 | \( 1 + (-9.56 + 6.95i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63310631771328244853608809635, −9.895206103633825619537556286169, −9.316386303744147270749332436522, −8.669441717869679722009520283870, −7.12298918183202790273104590239, −6.38365000892134938788607989660, −5.25370202898430171824920172212, −4.28054051783165983437444087479, −3.17259028702294530491834017962, −2.09407558287129768473336050222,
1.19365066101925706676558967915, 2.01277474078249752843598137209, 3.55040682242966118322683275179, 4.93062608999479818856335364843, 6.17553368541704022478902061621, 6.63913476690318699595997519206, 7.80451680752480914677197293340, 8.656288320573451666801136682192, 9.272371604051189424712416242173, 10.33906043171952564823802785772