Properties

Label 616.2.r.f
Level $616$
Weight $2$
Character orbit 616.r
Analytic conductor $4.919$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [616,2,Mod(113,616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(616, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("616.113");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 616.r (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.91878476451\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} + 21 x^{18} - 58 x^{17} + 225 x^{16} - 348 x^{15} + 1296 x^{14} - 755 x^{13} + \cdots + 10000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{3} + ( - \beta_{11} - \beta_{6} - \beta_{4} + \cdots - 1) q^{5} - \beta_{11} q^{7} + (\beta_{19} - \beta_{18} + \cdots - \beta_1) q^{9} + ( - \beta_{17} - \beta_{15} + \beta_{6}) q^{11}+ \cdots + (2 \beta_{19} - 2 \beta_{18} + \cdots - 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - q^{3} + 5 q^{7} - 6 q^{9} - 3 q^{11} + 2 q^{13} + 8 q^{15} + 21 q^{19} + 6 q^{21} - 6 q^{23} - 7 q^{25} + 32 q^{27} + 6 q^{29} - 18 q^{31} - 16 q^{33} + 5 q^{37} + 12 q^{39} - 12 q^{41} - 42 q^{43}+ \cdots - 57 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 4 x^{19} + 21 x^{18} - 58 x^{17} + 225 x^{16} - 348 x^{15} + 1296 x^{14} - 755 x^{13} + \cdots + 10000 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 25\!\cdots\!87 \nu^{19} + \cdots + 17\!\cdots\!00 ) / 87\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 33\!\cdots\!79 \nu^{19} + \cdots - 18\!\cdots\!00 ) / 87\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 15\!\cdots\!89 \nu^{19} + \cdots + 39\!\cdots\!00 ) / 21\!\cdots\!50 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 32\!\cdots\!14 \nu^{19} + \cdots + 30\!\cdots\!00 ) / 43\!\cdots\!50 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 84\!\cdots\!79 \nu^{19} + \cdots - 62\!\cdots\!00 ) / 87\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 12\!\cdots\!41 \nu^{19} + \cdots + 84\!\cdots\!00 ) / 87\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 77\!\cdots\!91 \nu^{19} + \cdots + 21\!\cdots\!00 ) / 43\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 39\!\cdots\!98 \nu^{19} + \cdots + 12\!\cdots\!00 ) / 21\!\cdots\!50 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 15\!\cdots\!89 \nu^{19} + \cdots + 41\!\cdots\!00 ) / 87\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 91\!\cdots\!69 \nu^{19} + \cdots - 13\!\cdots\!00 ) / 43\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 38\!\cdots\!87 \nu^{19} + \cdots - 37\!\cdots\!00 ) / 16\!\cdots\!50 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 48\!\cdots\!31 \nu^{19} + \cdots + 42\!\cdots\!00 ) / 17\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 15\!\cdots\!87 \nu^{19} + \cdots + 52\!\cdots\!00 ) / 43\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 30\!\cdots\!93 \nu^{19} + \cdots - 51\!\cdots\!00 ) / 87\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 15\!\cdots\!64 \nu^{19} + \cdots - 52\!\cdots\!00 ) / 43\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 95\!\cdots\!37 \nu^{19} + \cdots - 96\!\cdots\!00 ) / 17\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 67\!\cdots\!58 \nu^{19} + \cdots + 17\!\cdots\!00 ) / 87\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 47\!\cdots\!62 \nu^{19} + \cdots + 41\!\cdots\!00 ) / 43\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{18} + \beta_{12} + 5\beta_{11} - \beta_{10} - \beta_{9} + \beta_{8} + \beta_{4} - \beta_{3} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{18} + 2 \beta_{17} + \beta_{15} + \beta_{14} - \beta_{13} - 2 \beta_{12} - \beta_{8} - \beta_{7} + \cdots - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4 \beta_{19} + 12 \beta_{17} + 12 \beta_{15} + 12 \beta_{14} - 40 \beta_{11} + 12 \beta_{10} + 8 \beta_{9} + \cdots - 32 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 33 \beta_{19} - 18 \beta_{18} + 14 \beta_{17} - 29 \beta_{16} + 33 \beta_{15} + 29 \beta_{14} + \cdots - 77 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 138 \beta_{19} - 138 \beta_{18} - 134 \beta_{16} + 63 \beta_{15} + 11 \beta_{14} + 63 \beta_{13} + \cdots - 87 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 238 \beta_{19} - 428 \beta_{18} - 170 \beta_{17} - 170 \beta_{16} + 238 \beta_{13} - 138 \beta_{12} + \cdots - 238 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 808 \beta_{18} - 1477 \beta_{17} - 808 \beta_{15} - 260 \beta_{14} + 773 \beta_{13} + 909 \beta_{12} + \cdots - 229 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 2901 \beta_{19} - 4266 \beta_{17} + 2005 \beta_{16} - 5150 \beta_{15} - 4266 \beta_{14} + 7643 \beta_{11} + \cdots + 9136 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 18128 \beta_{19} + 9792 \beta_{18} - 4272 \beta_{17} + 16332 \beta_{16} - 18128 \beta_{15} + \cdots + 42984 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 60317 \beta_{19} + 60317 \beta_{18} + 49633 \beta_{16} - 34406 \beta_{15} - 23582 \beta_{14} + \cdots + 79456 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 116235 \beta_{19} + 208158 \beta_{18} + 60679 \beta_{17} + 60679 \beta_{16} - 116235 \beta_{13} + \cdots + 116235 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 403786 \beta_{18} + 572872 \beta_{17} + 403786 \beta_{15} + 278074 \beta_{14} - 295606 \beta_{13} + \cdots - 246870 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 1367076 \beta_{19} + 2042737 \beta_{17} - 800204 \beta_{16} + 2393409 \beta_{15} + 2042737 \beta_{14} + \cdots - 4283224 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 8080442 \beta_{19} - 4716641 \beta_{18} + 3285217 \beta_{17} - 6589394 \beta_{16} + 8080442 \beta_{15} + \cdots - 17276877 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 27549860 \beta_{19} - 27549860 \beta_{18} - 23080828 \beta_{16} + 15999404 \beta_{15} + 10111728 \beta_{14} + \cdots - 36677924 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 54957194 \beta_{19} - 93250361 \beta_{18} - 38818014 \beta_{17} - 38818014 \beta_{16} + 54957194 \beta_{13} + \cdots - 54957194 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( - 186673303 \beta_{18} - 262122886 \beta_{17} - 186673303 \beta_{15} - 124440195 \beta_{14} + \cdots + 124242485 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( - 639316518 \beta_{19} - 869376568 \beta_{17} + 458111114 \beta_{16} - 1075896580 \beta_{15} + \cdots + 1825417254 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/616\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(309\) \(353\) \(463\)
\(\chi(n)\) \(\beta_{11}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
113.1
2.75053 1.99838i
1.68999 1.22785i
0.425479 0.309129i
−1.00586 + 0.730797i
−1.74211 + 1.26571i
2.75053 + 1.99838i
1.68999 + 1.22785i
0.425479 + 0.309129i
−1.00586 0.730797i
−1.74211 1.26571i
0.847039 + 2.60692i
0.641063 + 1.97299i
−0.0976679 0.300591i
−0.560457 1.72491i
−0.948011 2.91768i
0.847039 2.60692i
0.641063 1.97299i
−0.0976679 + 0.300591i
−0.560457 + 1.72491i
−0.948011 + 2.91768i
0 −1.05061 3.23344i 0 −0.556182 0.404090i 0 −0.309017 + 0.951057i 0 −6.92433 + 5.03082i 0
113.2 0 −0.645517 1.98670i 0 1.70961 + 1.24210i 0 −0.309017 + 0.951057i 0 −1.10322 + 0.801539i 0
113.3 0 −0.162519 0.500181i 0 −1.76076 1.27927i 0 −0.309017 + 0.951057i 0 2.20328 1.60078i 0
113.4 0 0.384203 + 1.18245i 0 −2.71639 1.97357i 0 −0.309017 + 0.951057i 0 1.17646 0.854751i 0
113.5 0 0.665425 + 2.04797i 0 2.20569 + 1.60253i 0 −0.309017 + 0.951057i 0 −1.32433 + 0.962184i 0
169.1 0 −1.05061 + 3.23344i 0 −0.556182 + 0.404090i 0 −0.309017 0.951057i 0 −6.92433 5.03082i 0
169.2 0 −0.645517 + 1.98670i 0 1.70961 1.24210i 0 −0.309017 0.951057i 0 −1.10322 0.801539i 0
169.3 0 −0.162519 + 0.500181i 0 −1.76076 + 1.27927i 0 −0.309017 0.951057i 0 2.20328 + 1.60078i 0
169.4 0 0.384203 1.18245i 0 −2.71639 + 1.97357i 0 −0.309017 0.951057i 0 1.17646 + 0.854751i 0
169.5 0 0.665425 2.04797i 0 2.20569 1.60253i 0 −0.309017 0.951057i 0 −1.32433 0.962184i 0
225.1 0 −2.21758 1.61116i 0 −0.395619 + 1.21759i 0 0.809017 0.587785i 0 1.39475 + 4.29259i 0
225.2 0 −1.67832 1.21937i 0 0.914896 2.81576i 0 0.809017 0.587785i 0 0.402849 + 1.23984i 0
225.3 0 0.255698 + 0.185775i 0 0.102849 0.316537i 0 0.809017 0.587785i 0 −0.896182 2.75816i 0
225.4 0 1.46730 + 1.06605i 0 −0.699852 + 2.15392i 0 0.809017 0.587785i 0 0.0894373 + 0.275260i 0
225.5 0 2.48193 + 1.80322i 0 1.19576 3.68017i 0 0.809017 0.587785i 0 1.98128 + 6.09777i 0
449.1 0 −2.21758 + 1.61116i 0 −0.395619 1.21759i 0 0.809017 + 0.587785i 0 1.39475 4.29259i 0
449.2 0 −1.67832 + 1.21937i 0 0.914896 + 2.81576i 0 0.809017 + 0.587785i 0 0.402849 1.23984i 0
449.3 0 0.255698 0.185775i 0 0.102849 + 0.316537i 0 0.809017 + 0.587785i 0 −0.896182 + 2.75816i 0
449.4 0 1.46730 1.06605i 0 −0.699852 2.15392i 0 0.809017 + 0.587785i 0 0.0894373 0.275260i 0
449.5 0 2.48193 1.80322i 0 1.19576 + 3.68017i 0 0.809017 + 0.587785i 0 1.98128 6.09777i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 113.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 616.2.r.f 20
11.c even 5 1 inner 616.2.r.f 20
11.c even 5 1 6776.2.a.bm 10
11.d odd 10 1 6776.2.a.bn 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
616.2.r.f 20 1.a even 1 1 trivial
616.2.r.f 20 11.c even 5 1 inner
6776.2.a.bm 10 11.c even 5 1
6776.2.a.bn 10 11.d odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{20} + T_{3}^{19} + 11 T_{3}^{18} - 8 T_{3}^{17} + 85 T_{3}^{16} + 112 T_{3}^{15} + 1081 T_{3}^{14} + \cdots + 10000 \) acting on \(S_{2}^{\mathrm{new}}(616, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \) Copy content Toggle raw display
$3$ \( T^{20} + T^{19} + \cdots + 10000 \) Copy content Toggle raw display
$5$ \( T^{20} + 16 T^{18} + \cdots + 102400 \) Copy content Toggle raw display
$7$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{5} \) Copy content Toggle raw display
$11$ \( T^{20} + \cdots + 25937424601 \) Copy content Toggle raw display
$13$ \( T^{20} + \cdots + 5609410816 \) Copy content Toggle raw display
$17$ \( T^{20} + 39 T^{18} + \cdots + 51552400 \) Copy content Toggle raw display
$19$ \( T^{20} + \cdots + 2296709776 \) Copy content Toggle raw display
$23$ \( (T^{10} + 3 T^{9} + \cdots - 368404)^{2} \) Copy content Toggle raw display
$29$ \( T^{20} + \cdots + 638362648576 \) Copy content Toggle raw display
$31$ \( T^{20} + \cdots + 101572239616 \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots + 5836348816 \) Copy content Toggle raw display
$41$ \( T^{20} + 12 T^{19} + \cdots + 20647936 \) Copy content Toggle raw display
$43$ \( (T^{10} + 21 T^{9} + \cdots - 398345)^{2} \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 6845245696 \) Copy content Toggle raw display
$53$ \( T^{20} + \cdots + 17188652646400 \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 23809724416 \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( (T^{10} + T^{9} + \cdots + 78764149)^{2} \) Copy content Toggle raw display
$71$ \( T^{20} + \cdots + 12037569030400 \) Copy content Toggle raw display
$73$ \( T^{20} + \cdots + 129431214182656 \) Copy content Toggle raw display
$79$ \( T^{20} + \cdots + 907134334096 \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 15\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( (T^{10} + 23 T^{9} + \cdots + 455935796)^{2} \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 17\!\cdots\!16 \) Copy content Toggle raw display
show more
show less