[N,k,chi] = [616,2,Mod(113,616)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(616, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 0, 0, 8]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("616.113");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of χ \chi χ on generators for ( Z / 616 Z ) × \left(\mathbb{Z}/616\mathbb{Z}\right)^\times ( Z / 6 1 6 Z ) × .
n n n
57 57 5 7
309 309 3 0 9
353 353 3 5 3
463 463 4 6 3
χ ( n ) \chi(n) χ ( n )
β 11 \beta_{11} β 1 1
1 1 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 20 + T 3 19 + 11 T 3 18 − 8 T 3 17 + 85 T 3 16 + 112 T 3 15 + 1081 T 3 14 + ⋯ + 10000 T_{3}^{20} + T_{3}^{19} + 11 T_{3}^{18} - 8 T_{3}^{17} + 85 T_{3}^{16} + 112 T_{3}^{15} + 1081 T_{3}^{14} + \cdots + 10000 T 3 2 0 + T 3 1 9 + 1 1 T 3 1 8 − 8 T 3 1 7 + 8 5 T 3 1 6 + 1 1 2 T 3 1 5 + 1 0 8 1 T 3 1 4 + ⋯ + 1 0 0 0 0
T3^20 + T3^19 + 11*T3^18 - 8*T3^17 + 85*T3^16 + 112*T3^15 + 1081*T3^14 + 395*T3^13 + 6377*T3^12 + 1027*T3^11 + 22864*T3^10 - 6414*T3^9 + 75177*T3^8 - 12610*T3^7 + 296139*T3^6 - 188178*T3^5 + 446621*T3^4 - 125070*T3^3 + 97900*T3^2 - 43000*T3 + 10000
acting on S 2 n e w ( 616 , [ χ ] ) S_{2}^{\mathrm{new}}(616, [\chi]) S 2 n e w ( 6 1 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 20 T^{20} T 2 0
T^20
3 3 3
T 20 + T 19 + ⋯ + 10000 T^{20} + T^{19} + \cdots + 10000 T 2 0 + T 1 9 + ⋯ + 1 0 0 0 0
T^20 + T^19 + 11*T^18 - 8*T^17 + 85*T^16 + 112*T^15 + 1081*T^14 + 395*T^13 + 6377*T^12 + 1027*T^11 + 22864*T^10 - 6414*T^9 + 75177*T^8 - 12610*T^7 + 296139*T^6 - 188178*T^5 + 446621*T^4 - 125070*T^3 + 97900*T^2 - 43000*T + 10000
5 5 5
T 20 + 16 T 18 + ⋯ + 102400 T^{20} + 16 T^{18} + \cdots + 102400 T 2 0 + 1 6 T 1 8 + ⋯ + 1 0 2 4 0 0
T^20 + 16*T^18 + 34*T^17 + 168*T^16 + 18*T^15 + 2021*T^14 + 358*T^13 + 11889*T^12 + 10088*T^11 + 78257*T^10 + 64910*T^9 + 241677*T^8 - 24366*T^7 + 1104436*T^6 + 1532968*T^5 + 2845136*T^4 + 1969280*T^3 + 770560*T^2 + 76800*T + 102400
7 7 7
( T 4 − T 3 + T 2 + ⋯ + 1 ) 5 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{5} ( T 4 − T 3 + T 2 + ⋯ + 1 ) 5
(T^4 - T^3 + T^2 - T + 1)^5
11 11 1 1
T 20 + ⋯ + 25937424601 T^{20} + \cdots + 25937424601 T 2 0 + ⋯ + 2 5 9 3 7 4 2 4 6 0 1
T^20 + 3*T^19 + 17*T^18 + 68*T^17 + 297*T^16 + 516*T^15 + 2061*T^14 + 5244*T^13 + 2191*T^12 - 7971*T^11 + 23066*T^10 - 87681*T^9 + 265111*T^8 + 6979764*T^7 + 30175101*T^6 + 83102316*T^5 + 526153617*T^4 + 1325127628*T^3 + 3644100977*T^2 + 7073843073*T + 25937424601
13 13 1 3
T 20 + ⋯ + 5609410816 T^{20} + \cdots + 5609410816 T 2 0 + ⋯ + 5 6 0 9 4 1 0 8 1 6
T^20 - 2*T^19 + 15*T^18 - 60*T^17 + 1180*T^16 + 778*T^15 + 30946*T^14 - 64419*T^13 + 767545*T^12 - 451785*T^11 + 9328712*T^10 - 8375841*T^9 + 246089003*T^8 - 359548218*T^7 + 1972880480*T^6 - 2267000120*T^5 + 6525679312*T^4 - 7359439904*T^3 + 7218488448*T^2 - 3629160576*T + 5609410816
17 17 1 7
T 20 + 39 T 18 + ⋯ + 51552400 T^{20} + 39 T^{18} + \cdots + 51552400 T 2 0 + 3 9 T 1 8 + ⋯ + 5 1 5 5 2 4 0 0
T^20 + 39*T^18 - 207*T^17 + 1413*T^16 + 5649*T^15 + 70309*T^14 + 25826*T^13 + 675374*T^12 - 1735546*T^11 + 12068323*T^10 - 15603720*T^9 + 78490677*T^8 - 243602703*T^7 + 1447867529*T^6 - 4024673589*T^5 + 8452230051*T^4 - 10216671990*T^3 + 7337652140*T^2 + 322166600*T + 51552400
19 19 1 9
T 20 + ⋯ + 2296709776 T^{20} + \cdots + 2296709776 T 2 0 + ⋯ + 2 2 9 6 7 0 9 7 7 6
T^20 - 21*T^19 + 251*T^18 - 1945*T^17 + 12057*T^16 - 63382*T^15 + 378499*T^14 - 2150646*T^13 + 11732500*T^12 - 61242570*T^11 + 344207209*T^10 - 1359912083*T^9 + 3936933637*T^8 - 8797634243*T^7 + 20147279617*T^6 - 28716041476*T^5 + 36517727941*T^4 - 24979532146*T^3 + 11106808448*T^2 - 3226818768*T + 2296709776
23 23 2 3
( T 10 + 3 T 9 + ⋯ − 368404 ) 2 (T^{10} + 3 T^{9} + \cdots - 368404)^{2} ( T 1 0 + 3 T 9 + ⋯ − 3 6 8 4 0 4 ) 2
(T^10 + 3*T^9 - 147*T^8 - 290*T^7 + 6598*T^6 + 6646*T^5 - 87923*T^4 - 79653*T^3 + 328317*T^2 + 184756*T - 368404)^2
29 29 2 9
T 20 + ⋯ + 638362648576 T^{20} + \cdots + 638362648576 T 2 0 + ⋯ + 6 3 8 3 6 2 6 4 8 5 7 6
T^20 - 6*T^19 + 108*T^18 - 648*T^17 + 6687*T^16 - 30024*T^15 + 258600*T^14 - 1050443*T^13 + 11097184*T^12 - 50234476*T^11 + 320965203*T^10 - 1210371232*T^9 + 4921734960*T^8 - 14049748055*T^7 + 33307393364*T^6 - 36862808535*T^5 + 45618349009*T^4 - 44302494896*T^3 + 287370264064*T^2 - 604153692160*T + 638362648576
31 31 3 1
T 20 + ⋯ + 101572239616 T^{20} + \cdots + 101572239616 T 2 0 + ⋯ + 1 0 1 5 7 2 2 3 9 6 1 6
T^20 + 18*T^19 + 170*T^18 + 849*T^17 + 5024*T^16 + 32614*T^15 + 348717*T^14 + 2317870*T^13 + 14685758*T^12 + 61461003*T^11 + 349783230*T^10 + 987520284*T^9 + 4589940337*T^8 + 13579709584*T^7 + 80157374040*T^6 + 307082777216*T^5 + 982498038576*T^4 + 1263810725568*T^3 + 1786567587392*T^2 - 200383227776*T + 101572239616
37 37 3 7
T 20 + ⋯ + 5836348816 T^{20} + \cdots + 5836348816 T 2 0 + ⋯ + 5 8 3 6 3 4 8 8 1 6
T^20 - 5*T^19 + 77*T^18 + 119*T^17 + 2138*T^16 - 5757*T^15 + 301330*T^14 - 799257*T^13 + 7304327*T^12 + 24873754*T^11 + 89725165*T^10 + 106938308*T^9 + 4397438345*T^8 - 489444799*T^7 - 10470834190*T^6 + 68490789750*T^5 + 612652478765*T^4 - 79647777746*T^3 + 135476238872*T^2 + 9690679808*T + 5836348816
41 41 4 1
T 20 + 12 T 19 + ⋯ + 20647936 T^{20} + 12 T^{19} + \cdots + 20647936 T 2 0 + 1 2 T 1 9 + ⋯ + 2 0 6 4 7 9 3 6
T^20 + 12*T^19 + 78*T^18 - 541*T^17 + 531*T^16 - 24256*T^15 + 950867*T^14 - 2620898*T^13 - 6779843*T^12 + 20493317*T^11 + 391962329*T^10 - 1102424425*T^9 + 1684030885*T^8 - 2159455836*T^7 + 11836565544*T^6 + 6146256728*T^5 + 18252462672*T^4 + 2958417280*T^3 + 1920426496*T^2 - 82809856*T + 20647936
43 43 4 3
( T 10 + 21 T 9 + ⋯ − 398345 ) 2 (T^{10} + 21 T^{9} + \cdots - 398345)^{2} ( T 1 0 + 2 1 T 9 + ⋯ − 3 9 8 3 4 5 ) 2
(T^10 + 21*T^9 - 8*T^8 - 2795*T^7 - 16727*T^6 + 28236*T^5 + 391755*T^4 + 328507*T^3 - 2243476*T^2 - 3662065*T - 398345)^2
47 47 4 7
T 20 + ⋯ + 6845245696 T^{20} + \cdots + 6845245696 T 2 0 + ⋯ + 6 8 4 5 2 4 5 6 9 6
T^20 - 3*T^19 + 90*T^18 - 736*T^17 + 6035*T^16 - 14990*T^15 + 294777*T^14 - 349099*T^13 + 2327287*T^12 - 11427731*T^11 + 157513497*T^10 - 425338636*T^9 + 1360404041*T^8 + 1933283666*T^7 + 188783540*T^6 - 12723268128*T^5 + 38705401872*T^4 + 26515893056*T^3 + 50919555840*T^2 + 13225846016*T + 6845245696
53 53 5 3
T 20 + ⋯ + 17188652646400 T^{20} + \cdots + 17188652646400 T 2 0 + ⋯ + 1 7 1 8 8 6 5 2 6 4 6 4 0 0
T^20 + 38*T^19 + 735*T^18 + 9405*T^17 + 108645*T^16 + 1078829*T^15 + 8130067*T^14 + 40056665*T^13 + 231254765*T^12 + 1065946095*T^11 + 3662270247*T^10 - 4928690649*T^9 + 140398203795*T^8 - 633087485645*T^7 + 2610687748155*T^6 - 8154030653268*T^5 + 24092407419601*T^4 - 38794044456880*T^3 + 32669238826240*T^2 - 3589040025600*T + 17188652646400
59 59 5 9
T 20 + ⋯ + 23809724416 T^{20} + \cdots + 23809724416 T 2 0 + ⋯ + 2 3 8 0 9 7 2 4 4 1 6
T^20 - 36*T^19 + 709*T^18 - 9200*T^17 + 95420*T^16 - 779204*T^15 + 5437927*T^14 - 28872626*T^13 + 130307549*T^12 - 245537298*T^11 + 840302657*T^10 + 4223815076*T^9 + 21963345292*T^8 + 32719619598*T^7 + 159342106359*T^6 + 258248741586*T^5 + 430747367449*T^4 + 477578123296*T^3 + 1099155919744*T^2 - 264544949760*T + 23809724416
61 61 6 1
T 20 + ⋯ + 27 ⋯ 00 T^{20} + \cdots + 27\!\cdots\!00 T 2 0 + ⋯ + 2 7 ⋯ 0 0
T^20 - 23*T^19 + 398*T^18 - 5538*T^17 + 85111*T^16 - 704040*T^15 + 7083117*T^14 - 49437195*T^13 + 374979207*T^12 - 856000785*T^11 + 11633329517*T^10 - 12410563240*T^9 + 494050363761*T^8 + 82467743448*T^7 + 13691684294288*T^6 + 49740433669608*T^5 + 571351168510896*T^4 + 2555518588344640*T^3 + 9558707749749760*T^2 + 20136058292326400*T + 27414987903078400
67 67 6 7
( T 10 + T 9 + ⋯ + 78764149 ) 2 (T^{10} + T^{9} + \cdots + 78764149)^{2} ( T 1 0 + T 9 + ⋯ + 7 8 7 6 4 1 4 9 ) 2
(T^10 + T^9 - 355*T^8 + 549*T^7 + 42627*T^6 - 149476*T^5 - 1761143*T^4 + 8362063*T^3 + 16151023*T^2 - 108229455*T + 78764149)^2
71 71 7 1
T 20 + ⋯ + 12037569030400 T^{20} + \cdots + 12037569030400 T 2 0 + ⋯ + 1 2 0 3 7 5 6 9 0 3 0 4 0 0
T^20 - 48*T^19 + 1431*T^18 - 29118*T^17 + 457632*T^16 - 5702260*T^15 + 61141965*T^14 - 555048195*T^13 + 4419939598*T^12 - 29953918559*T^11 + 174424034781*T^10 - 844785670563*T^9 + 3433712384279*T^8 - 9291480100773*T^7 + 11152674215578*T^6 + 13693382604721*T^5 + 12052406236641*T^4 - 57699227975640*T^3 + 68296842794240*T^2 - 29589523758400*T + 12037569030400
73 73 7 3
T 20 + ⋯ + 129431214182656 T^{20} + \cdots + 129431214182656 T 2 0 + ⋯ + 1 2 9 4 3 1 2 1 4 1 8 2 6 5 6
T^20 - 6*T^19 + 175*T^18 - 2160*T^17 + 26648*T^16 - 37018*T^15 + 2229829*T^14 - 962314*T^13 + 20451419*T^12 - 41254902*T^11 + 1468872093*T^10 - 376732904*T^9 + 24151834452*T^8 - 3101983546*T^7 + 288633040217*T^6 + 215200820918*T^5 + 2809725085161*T^4 + 5135914685804*T^3 + 40685711458880*T^2 + 50129659860608*T + 129431214182656
79 79 7 9
T 20 + ⋯ + 907134334096 T^{20} + \cdots + 907134334096 T 2 0 + ⋯ + 9 0 7 1 3 4 3 3 4 0 9 6
T^20 - 43*T^19 + 965*T^18 - 12857*T^17 + 137731*T^16 - 2044440*T^15 + 48704411*T^14 - 922675503*T^13 + 12557181066*T^12 - 126214206434*T^11 + 1057234834777*T^10 - 7354009616532*T^9 + 42821325303419*T^8 - 195635076105898*T^7 + 714399701214538*T^6 - 1774343645147743*T^5 + 4277431035963589*T^4 - 8145851124348052*T^3 + 9618454075081848*T^2 - 58351618242888*T + 907134334096
83 83 8 3
T 20 + ⋯ + 15 ⋯ 76 T^{20} + \cdots + 15\!\cdots\!76 T 2 0 + ⋯ + 1 5 ⋯ 7 6
T^20 - 5*T^19 + 305*T^18 - 4278*T^17 + 58489*T^16 - 389172*T^15 + 6497239*T^14 - 84055484*T^13 + 1300714428*T^12 - 11816529808*T^11 + 102683861277*T^10 - 675698172713*T^9 + 4906996273659*T^8 - 16118333932509*T^7 + 72408526831408*T^6 - 179725000808055*T^5 + 1809180872491009*T^4 + 7829505131887072*T^3 + 41656090995201920*T^2 + 98776944638218752*T + 156264442834456576
89 89 8 9
( T 10 + 23 T 9 + ⋯ + 455935796 ) 2 (T^{10} + 23 T^{9} + \cdots + 455935796)^{2} ( T 1 0 + 2 3 T 9 + ⋯ + 4 5 5 9 3 5 7 9 6 ) 2
(T^10 + 23*T^9 - 215*T^8 - 7723*T^7 - 9646*T^6 + 704119*T^5 + 2746413*T^4 - 18353276*T^3 - 77054387*T^2 + 127123014*T + 455935796)^2
97 97 9 7
T 20 + ⋯ + 17 ⋯ 16 T^{20} + \cdots + 17\!\cdots\!16 T 2 0 + ⋯ + 1 7 ⋯ 1 6
T^20 - 9*T^19 + 455*T^18 + 730*T^17 + 89538*T^16 + 344155*T^15 + 29868303*T^14 + 160245431*T^13 + 6288658864*T^12 + 48665443024*T^11 + 1108228538363*T^10 + 7494592433463*T^9 + 96376117586383*T^8 + 606724308117230*T^7 + 16858088594030180*T^6 + 143710238700181296*T^5 + 1160616594653343760*T^4 + 4722577672640610752*T^3 + 12042891733844361088*T^2 + 17512060068523806208*T + 17801104401113334016
show more
show less