Properties

Label 616.2.r.f
Level 616616
Weight 22
Character orbit 616.r
Analytic conductor 4.9194.919
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [616,2,Mod(113,616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(616, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("616.113");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 616=23711 616 = 2^{3} \cdot 7 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 616.r (of order 55, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.918784764514.91878476451
Analytic rank: 00
Dimension: 2020
Relative dimension: 55 over Q(ζ5)\Q(\zeta_{5})
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x204x19+21x1858x17+225x16348x15+1296x14755x13++10000 x^{20} - 4 x^{19} + 21 x^{18} - 58 x^{17} + 225 x^{16} - 348 x^{15} + 1296 x^{14} - 755 x^{13} + \cdots + 10000 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ3q3+(β11β6β4+1)q5β11q7+(β19β18+β1)q9+(β17β15+β6)q11++(2β192β18+7)q99+O(q100) q - \beta_{3} q^{3} + ( - \beta_{11} - \beta_{6} - \beta_{4} + \cdots - 1) q^{5} - \beta_{11} q^{7} + (\beta_{19} - \beta_{18} + \cdots - \beta_1) q^{9} + ( - \beta_{17} - \beta_{15} + \beta_{6}) q^{11}+ \cdots + (2 \beta_{19} - 2 \beta_{18} + \cdots - 7) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20qq3+5q76q93q11+2q13+8q15+21q19+6q216q237q25+32q27+6q2918q3116q33+5q37+12q3912q4142q43+57q99+O(q100) 20 q - q^{3} + 5 q^{7} - 6 q^{9} - 3 q^{11} + 2 q^{13} + 8 q^{15} + 21 q^{19} + 6 q^{21} - 6 q^{23} - 7 q^{25} + 32 q^{27} + 6 q^{29} - 18 q^{31} - 16 q^{33} + 5 q^{37} + 12 q^{39} - 12 q^{41} - 42 q^{43}+ \cdots - 57 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x204x19+21x1858x17+225x16348x15+1296x14755x13++10000 x^{20} - 4 x^{19} + 21 x^{18} - 58 x^{17} + 225 x^{16} - 348 x^{15} + 1296 x^{14} - 755 x^{13} + \cdots + 10000 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (25 ⁣ ⁣87ν19++17 ⁣ ⁣00)/87 ⁣ ⁣00 ( - 25\!\cdots\!87 \nu^{19} + \cdots + 17\!\cdots\!00 ) / 87\!\cdots\!00 Copy content Toggle raw display
β3\beta_{3}== (33 ⁣ ⁣79ν19+18 ⁣ ⁣00)/87 ⁣ ⁣00 ( - 33\!\cdots\!79 \nu^{19} + \cdots - 18\!\cdots\!00 ) / 87\!\cdots\!00 Copy content Toggle raw display
β4\beta_{4}== (15 ⁣ ⁣89ν19++39 ⁣ ⁣00)/21 ⁣ ⁣50 ( - 15\!\cdots\!89 \nu^{19} + \cdots + 39\!\cdots\!00 ) / 21\!\cdots\!50 Copy content Toggle raw display
β5\beta_{5}== (32 ⁣ ⁣14ν19++30 ⁣ ⁣00)/43 ⁣ ⁣50 ( 32\!\cdots\!14 \nu^{19} + \cdots + 30\!\cdots\!00 ) / 43\!\cdots\!50 Copy content Toggle raw display
β6\beta_{6}== (84 ⁣ ⁣79ν19+62 ⁣ ⁣00)/87 ⁣ ⁣00 ( - 84\!\cdots\!79 \nu^{19} + \cdots - 62\!\cdots\!00 ) / 87\!\cdots\!00 Copy content Toggle raw display
β7\beta_{7}== (12 ⁣ ⁣41ν19++84 ⁣ ⁣00)/87 ⁣ ⁣00 ( - 12\!\cdots\!41 \nu^{19} + \cdots + 84\!\cdots\!00 ) / 87\!\cdots\!00 Copy content Toggle raw display
β8\beta_{8}== (77 ⁣ ⁣91ν19++21 ⁣ ⁣00)/43 ⁣ ⁣00 ( 77\!\cdots\!91 \nu^{19} + \cdots + 21\!\cdots\!00 ) / 43\!\cdots\!00 Copy content Toggle raw display
β9\beta_{9}== (39 ⁣ ⁣98ν19++12 ⁣ ⁣00)/21 ⁣ ⁣50 ( - 39\!\cdots\!98 \nu^{19} + \cdots + 12\!\cdots\!00 ) / 21\!\cdots\!50 Copy content Toggle raw display
β10\beta_{10}== (15 ⁣ ⁣89ν19++41 ⁣ ⁣00)/87 ⁣ ⁣00 ( - 15\!\cdots\!89 \nu^{19} + \cdots + 41\!\cdots\!00 ) / 87\!\cdots\!00 Copy content Toggle raw display
β11\beta_{11}== (91 ⁣ ⁣69ν19+13 ⁣ ⁣00)/43 ⁣ ⁣00 ( - 91\!\cdots\!69 \nu^{19} + \cdots - 13\!\cdots\!00 ) / 43\!\cdots\!00 Copy content Toggle raw display
β12\beta_{12}== (38 ⁣ ⁣87ν19+37 ⁣ ⁣00)/16 ⁣ ⁣50 ( - 38\!\cdots\!87 \nu^{19} + \cdots - 37\!\cdots\!00 ) / 16\!\cdots\!50 Copy content Toggle raw display
β13\beta_{13}== (48 ⁣ ⁣31ν19++42 ⁣ ⁣00)/17 ⁣ ⁣00 ( - 48\!\cdots\!31 \nu^{19} + \cdots + 42\!\cdots\!00 ) / 17\!\cdots\!00 Copy content Toggle raw display
β14\beta_{14}== (15 ⁣ ⁣87ν19++52 ⁣ ⁣00)/43 ⁣ ⁣00 ( - 15\!\cdots\!87 \nu^{19} + \cdots + 52\!\cdots\!00 ) / 43\!\cdots\!00 Copy content Toggle raw display
β15\beta_{15}== (30 ⁣ ⁣93ν19+51 ⁣ ⁣00)/87 ⁣ ⁣00 ( - 30\!\cdots\!93 \nu^{19} + \cdots - 51\!\cdots\!00 ) / 87\!\cdots\!00 Copy content Toggle raw display
β16\beta_{16}== (15 ⁣ ⁣64ν19+52 ⁣ ⁣00)/43 ⁣ ⁣00 ( 15\!\cdots\!64 \nu^{19} + \cdots - 52\!\cdots\!00 ) / 43\!\cdots\!00 Copy content Toggle raw display
β17\beta_{17}== (95 ⁣ ⁣37ν19+96 ⁣ ⁣00)/17 ⁣ ⁣00 ( - 95\!\cdots\!37 \nu^{19} + \cdots - 96\!\cdots\!00 ) / 17\!\cdots\!00 Copy content Toggle raw display
β18\beta_{18}== (67 ⁣ ⁣58ν19++17 ⁣ ⁣00)/87 ⁣ ⁣00 ( 67\!\cdots\!58 \nu^{19} + \cdots + 17\!\cdots\!00 ) / 87\!\cdots\!00 Copy content Toggle raw display
β19\beta_{19}== (47 ⁣ ⁣62ν19++41 ⁣ ⁣00)/43 ⁣ ⁣00 ( 47\!\cdots\!62 \nu^{19} + \cdots + 41\!\cdots\!00 ) / 43\!\cdots\!00 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β18+β12+5β11β10β9+β8+β4β3+β1 \beta_{18} + \beta_{12} + 5\beta_{11} - \beta_{10} - \beta_{9} + \beta_{8} + \beta_{4} - \beta_{3} + \beta_1 Copy content Toggle raw display
ν3\nu^{3}== β18+2β17+β15+β14β132β12β8β7+1 \beta_{18} + 2 \beta_{17} + \beta_{15} + \beta_{14} - \beta_{13} - 2 \beta_{12} - \beta_{8} - \beta_{7} + \cdots - 1 Copy content Toggle raw display
ν4\nu^{4}== 4β19+12β17+12β15+12β1440β11+12β10+8β9+32 4 \beta_{19} + 12 \beta_{17} + 12 \beta_{15} + 12 \beta_{14} - 40 \beta_{11} + 12 \beta_{10} + 8 \beta_{9} + \cdots - 32 Copy content Toggle raw display
ν5\nu^{5}== 33β1918β18+14β1729β16+33β15+29β14+77 33 \beta_{19} - 18 \beta_{18} + 14 \beta_{17} - 29 \beta_{16} + 33 \beta_{15} + 29 \beta_{14} + \cdots - 77 Copy content Toggle raw display
ν6\nu^{6}== 138β19138β18134β16+63β15+11β14+63β13+87 138 \beta_{19} - 138 \beta_{18} - 134 \beta_{16} + 63 \beta_{15} + 11 \beta_{14} + 63 \beta_{13} + \cdots - 87 Copy content Toggle raw display
ν7\nu^{7}== 238β19428β18170β17170β16+238β13138β12+238 238 \beta_{19} - 428 \beta_{18} - 170 \beta_{17} - 170 \beta_{16} + 238 \beta_{13} - 138 \beta_{12} + \cdots - 238 Copy content Toggle raw display
ν8\nu^{8}== 808β181477β17808β15260β14+773β13+909β12+229 - 808 \beta_{18} - 1477 \beta_{17} - 808 \beta_{15} - 260 \beta_{14} + 773 \beta_{13} + 909 \beta_{12} + \cdots - 229 Copy content Toggle raw display
ν9\nu^{9}== 2901β194266β17+2005β165150β154266β14+7643β11++9136 - 2901 \beta_{19} - 4266 \beta_{17} + 2005 \beta_{16} - 5150 \beta_{15} - 4266 \beta_{14} + 7643 \beta_{11} + \cdots + 9136 Copy content Toggle raw display
ν10\nu^{10}== 18128β19+9792β184272β17+16332β1618128β15++42984 - 18128 \beta_{19} + 9792 \beta_{18} - 4272 \beta_{17} + 16332 \beta_{16} - 18128 \beta_{15} + \cdots + 42984 Copy content Toggle raw display
ν11\nu^{11}== 60317β19+60317β18+49633β1634406β1523582β14++79456 - 60317 \beta_{19} + 60317 \beta_{18} + 49633 \beta_{16} - 34406 \beta_{15} - 23582 \beta_{14} + \cdots + 79456 Copy content Toggle raw display
ν12\nu^{12}== 116235β19+208158β18+60679β17+60679β16116235β13++116235 - 116235 \beta_{19} + 208158 \beta_{18} + 60679 \beta_{17} + 60679 \beta_{16} - 116235 \beta_{13} + \cdots + 116235 Copy content Toggle raw display
ν13\nu^{13}== 403786β18+572872β17+403786β15+278074β14295606β13+246870 403786 \beta_{18} + 572872 \beta_{17} + 403786 \beta_{15} + 278074 \beta_{14} - 295606 \beta_{13} + \cdots - 246870 Copy content Toggle raw display
ν14\nu^{14}== 1367076β19+2042737β17800204β16+2393409β15+2042737β14+4283224 1367076 \beta_{19} + 2042737 \beta_{17} - 800204 \beta_{16} + 2393409 \beta_{15} + 2042737 \beta_{14} + \cdots - 4283224 Copy content Toggle raw display
ν15\nu^{15}== 8080442β194716641β18+3285217β176589394β16+8080442β15+17276877 8080442 \beta_{19} - 4716641 \beta_{18} + 3285217 \beta_{17} - 6589394 \beta_{16} + 8080442 \beta_{15} + \cdots - 17276877 Copy content Toggle raw display
ν16\nu^{16}== 27549860β1927549860β1823080828β16+15999404β15+10111728β14+36677924 27549860 \beta_{19} - 27549860 \beta_{18} - 23080828 \beta_{16} + 15999404 \beta_{15} + 10111728 \beta_{14} + \cdots - 36677924 Copy content Toggle raw display
ν17\nu^{17}== 54957194β1993250361β1838818014β1738818014β16+54957194β13+54957194 54957194 \beta_{19} - 93250361 \beta_{18} - 38818014 \beta_{17} - 38818014 \beta_{16} + 54957194 \beta_{13} + \cdots - 54957194 Copy content Toggle raw display
ν18\nu^{18}== 186673303β18262122886β17186673303β15124440195β14++124242485 - 186673303 \beta_{18} - 262122886 \beta_{17} - 186673303 \beta_{15} - 124440195 \beta_{14} + \cdots + 124242485 Copy content Toggle raw display
ν19\nu^{19}== 639316518β19869376568β17+458111114β161075896580β15++1825417254 - 639316518 \beta_{19} - 869376568 \beta_{17} + 458111114 \beta_{16} - 1075896580 \beta_{15} + \cdots + 1825417254 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/616Z)×\left(\mathbb{Z}/616\mathbb{Z}\right)^\times.

nn 5757 309309 353353 463463
χ(n)\chi(n) β11\beta_{11} 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
113.1
2.75053 1.99838i
1.68999 1.22785i
0.425479 0.309129i
−1.00586 + 0.730797i
−1.74211 + 1.26571i
2.75053 + 1.99838i
1.68999 + 1.22785i
0.425479 + 0.309129i
−1.00586 0.730797i
−1.74211 1.26571i
0.847039 + 2.60692i
0.641063 + 1.97299i
−0.0976679 0.300591i
−0.560457 1.72491i
−0.948011 2.91768i
0.847039 2.60692i
0.641063 1.97299i
−0.0976679 + 0.300591i
−0.560457 + 1.72491i
−0.948011 + 2.91768i
0 −1.05061 3.23344i 0 −0.556182 0.404090i 0 −0.309017 + 0.951057i 0 −6.92433 + 5.03082i 0
113.2 0 −0.645517 1.98670i 0 1.70961 + 1.24210i 0 −0.309017 + 0.951057i 0 −1.10322 + 0.801539i 0
113.3 0 −0.162519 0.500181i 0 −1.76076 1.27927i 0 −0.309017 + 0.951057i 0 2.20328 1.60078i 0
113.4 0 0.384203 + 1.18245i 0 −2.71639 1.97357i 0 −0.309017 + 0.951057i 0 1.17646 0.854751i 0
113.5 0 0.665425 + 2.04797i 0 2.20569 + 1.60253i 0 −0.309017 + 0.951057i 0 −1.32433 + 0.962184i 0
169.1 0 −1.05061 + 3.23344i 0 −0.556182 + 0.404090i 0 −0.309017 0.951057i 0 −6.92433 5.03082i 0
169.2 0 −0.645517 + 1.98670i 0 1.70961 1.24210i 0 −0.309017 0.951057i 0 −1.10322 0.801539i 0
169.3 0 −0.162519 + 0.500181i 0 −1.76076 + 1.27927i 0 −0.309017 0.951057i 0 2.20328 + 1.60078i 0
169.4 0 0.384203 1.18245i 0 −2.71639 + 1.97357i 0 −0.309017 0.951057i 0 1.17646 + 0.854751i 0
169.5 0 0.665425 2.04797i 0 2.20569 1.60253i 0 −0.309017 0.951057i 0 −1.32433 0.962184i 0
225.1 0 −2.21758 1.61116i 0 −0.395619 + 1.21759i 0 0.809017 0.587785i 0 1.39475 + 4.29259i 0
225.2 0 −1.67832 1.21937i 0 0.914896 2.81576i 0 0.809017 0.587785i 0 0.402849 + 1.23984i 0
225.3 0 0.255698 + 0.185775i 0 0.102849 0.316537i 0 0.809017 0.587785i 0 −0.896182 2.75816i 0
225.4 0 1.46730 + 1.06605i 0 −0.699852 + 2.15392i 0 0.809017 0.587785i 0 0.0894373 + 0.275260i 0
225.5 0 2.48193 + 1.80322i 0 1.19576 3.68017i 0 0.809017 0.587785i 0 1.98128 + 6.09777i 0
449.1 0 −2.21758 + 1.61116i 0 −0.395619 1.21759i 0 0.809017 + 0.587785i 0 1.39475 4.29259i 0
449.2 0 −1.67832 + 1.21937i 0 0.914896 + 2.81576i 0 0.809017 + 0.587785i 0 0.402849 1.23984i 0
449.3 0 0.255698 0.185775i 0 0.102849 + 0.316537i 0 0.809017 + 0.587785i 0 −0.896182 + 2.75816i 0
449.4 0 1.46730 1.06605i 0 −0.699852 2.15392i 0 0.809017 + 0.587785i 0 0.0894373 0.275260i 0
449.5 0 2.48193 1.80322i 0 1.19576 + 3.68017i 0 0.809017 + 0.587785i 0 1.98128 6.09777i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 113.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 616.2.r.f 20
11.c even 5 1 inner 616.2.r.f 20
11.c even 5 1 6776.2.a.bm 10
11.d odd 10 1 6776.2.a.bn 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
616.2.r.f 20 1.a even 1 1 trivial
616.2.r.f 20 11.c even 5 1 inner
6776.2.a.bm 10 11.c even 5 1
6776.2.a.bn 10 11.d odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T320+T319+11T3188T317+85T316+112T315+1081T314++10000 T_{3}^{20} + T_{3}^{19} + 11 T_{3}^{18} - 8 T_{3}^{17} + 85 T_{3}^{16} + 112 T_{3}^{15} + 1081 T_{3}^{14} + \cdots + 10000 acting on S2new(616,[χ])S_{2}^{\mathrm{new}}(616, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T20 T^{20} Copy content Toggle raw display
33 T20+T19++10000 T^{20} + T^{19} + \cdots + 10000 Copy content Toggle raw display
55 T20+16T18++102400 T^{20} + 16 T^{18} + \cdots + 102400 Copy content Toggle raw display
77 (T4T3+T2++1)5 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{5} Copy content Toggle raw display
1111 T20++25937424601 T^{20} + \cdots + 25937424601 Copy content Toggle raw display
1313 T20++5609410816 T^{20} + \cdots + 5609410816 Copy content Toggle raw display
1717 T20+39T18++51552400 T^{20} + 39 T^{18} + \cdots + 51552400 Copy content Toggle raw display
1919 T20++2296709776 T^{20} + \cdots + 2296709776 Copy content Toggle raw display
2323 (T10+3T9+368404)2 (T^{10} + 3 T^{9} + \cdots - 368404)^{2} Copy content Toggle raw display
2929 T20++638362648576 T^{20} + \cdots + 638362648576 Copy content Toggle raw display
3131 T20++101572239616 T^{20} + \cdots + 101572239616 Copy content Toggle raw display
3737 T20++5836348816 T^{20} + \cdots + 5836348816 Copy content Toggle raw display
4141 T20+12T19++20647936 T^{20} + 12 T^{19} + \cdots + 20647936 Copy content Toggle raw display
4343 (T10+21T9+398345)2 (T^{10} + 21 T^{9} + \cdots - 398345)^{2} Copy content Toggle raw display
4747 T20++6845245696 T^{20} + \cdots + 6845245696 Copy content Toggle raw display
5353 T20++17188652646400 T^{20} + \cdots + 17188652646400 Copy content Toggle raw display
5959 T20++23809724416 T^{20} + \cdots + 23809724416 Copy content Toggle raw display
6161 T20++27 ⁣ ⁣00 T^{20} + \cdots + 27\!\cdots\!00 Copy content Toggle raw display
6767 (T10+T9++78764149)2 (T^{10} + T^{9} + \cdots + 78764149)^{2} Copy content Toggle raw display
7171 T20++12037569030400 T^{20} + \cdots + 12037569030400 Copy content Toggle raw display
7373 T20++129431214182656 T^{20} + \cdots + 129431214182656 Copy content Toggle raw display
7979 T20++907134334096 T^{20} + \cdots + 907134334096 Copy content Toggle raw display
8383 T20++15 ⁣ ⁣76 T^{20} + \cdots + 15\!\cdots\!76 Copy content Toggle raw display
8989 (T10+23T9++455935796)2 (T^{10} + 23 T^{9} + \cdots + 455935796)^{2} Copy content Toggle raw display
9797 T20++17 ⁣ ⁣16 T^{20} + \cdots + 17\!\cdots\!16 Copy content Toggle raw display
show more
show less