Properties

Label 2-616-11.3-c1-0-11
Degree $2$
Conductor $616$
Sign $0.281 + 0.959i$
Analytic cond. $4.91878$
Root an. cond. $2.21783$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.645 − 1.98i)3-s + (1.70 + 1.24i)5-s + (−0.309 + 0.951i)7-s + (−1.10 + 0.801i)9-s + (−2.67 − 1.96i)11-s + (4.98 − 3.62i)13-s + (1.36 − 4.19i)15-s + (2.23 + 1.62i)17-s + (−0.142 − 0.438i)19-s + 2.08·21-s + 6.31·23-s + (−0.165 − 0.508i)25-s + (−2.76 − 2.00i)27-s + (0.693 − 2.13i)29-s + (−2.67 + 1.94i)31-s + ⋯
L(s)  = 1  + (−0.372 − 1.14i)3-s + (0.764 + 0.555i)5-s + (−0.116 + 0.359i)7-s + (−0.367 + 0.267i)9-s + (−0.805 − 0.592i)11-s + (1.38 − 1.00i)13-s + (0.352 − 1.08i)15-s + (0.541 + 0.393i)17-s + (−0.0326 − 0.100i)19-s + 0.455·21-s + 1.31·23-s + (−0.0330 − 0.101i)25-s + (−0.532 − 0.386i)27-s + (0.128 − 0.396i)29-s + (−0.480 + 0.349i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.281 + 0.959i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.281 + 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(616\)    =    \(2^{3} \cdot 7 \cdot 11\)
Sign: $0.281 + 0.959i$
Analytic conductor: \(4.91878\)
Root analytic conductor: \(2.21783\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{616} (113, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 616,\ (\ :1/2),\ 0.281 + 0.959i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.19364 - 0.894068i\)
\(L(\frac12)\) \(\approx\) \(1.19364 - 0.894068i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (0.309 - 0.951i)T \)
11 \( 1 + (2.67 + 1.96i)T \)
good3 \( 1 + (0.645 + 1.98i)T + (-2.42 + 1.76i)T^{2} \)
5 \( 1 + (-1.70 - 1.24i)T + (1.54 + 4.75i)T^{2} \)
13 \( 1 + (-4.98 + 3.62i)T + (4.01 - 12.3i)T^{2} \)
17 \( 1 + (-2.23 - 1.62i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (0.142 + 0.438i)T + (-15.3 + 11.1i)T^{2} \)
23 \( 1 - 6.31T + 23T^{2} \)
29 \( 1 + (-0.693 + 2.13i)T + (-23.4 - 17.0i)T^{2} \)
31 \( 1 + (2.67 - 1.94i)T + (9.57 - 29.4i)T^{2} \)
37 \( 1 + (-2.26 + 6.95i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (-0.0315 - 0.0970i)T + (-33.1 + 24.0i)T^{2} \)
43 \( 1 - 3.33T + 43T^{2} \)
47 \( 1 + (2.56 + 7.88i)T + (-38.0 + 27.6i)T^{2} \)
53 \( 1 + (10.1 - 7.37i)T + (16.3 - 50.4i)T^{2} \)
59 \( 1 + (-0.636 + 1.95i)T + (-47.7 - 34.6i)T^{2} \)
61 \( 1 + (2.15 + 1.56i)T + (18.8 + 58.0i)T^{2} \)
67 \( 1 - 5.10T + 67T^{2} \)
71 \( 1 + (-11.4 - 8.31i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (0.651 - 2.00i)T + (-59.0 - 42.9i)T^{2} \)
79 \( 1 + (-1.93 + 1.40i)T + (24.4 - 75.1i)T^{2} \)
83 \( 1 + (-6.49 - 4.72i)T + (25.6 + 78.9i)T^{2} \)
89 \( 1 + 10.9T + 89T^{2} \)
97 \( 1 + (9.99 - 7.26i)T + (29.9 - 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73345042976541322331182293827, −9.644783790392192331333720186226, −8.495086459075226834662463790238, −7.75937103700763838288745068622, −6.71064208366805988982927567297, −5.97111487880539918218884753873, −5.42566359333246566965838394674, −3.45602401570214832719401438291, −2.37551736154765562121957564007, −0.979011188043482530506362601443, 1.53160812047034509785150573316, 3.29852009936202648505077446282, 4.47783737305801165923088126964, 5.11924523453322672450319476154, 6.05789220271712297991806820819, 7.18228643219678665725729532878, 8.412982415576980743644359736857, 9.505418521297275640777555345690, 9.692302646732514764244419132142, 10.87409295717971019822567427717

Graph of the $Z$-function along the critical line