L(s) = 1 | + (−0.645 − 1.98i)3-s + (1.70 + 1.24i)5-s + (−0.309 + 0.951i)7-s + (−1.10 + 0.801i)9-s + (−2.67 − 1.96i)11-s + (4.98 − 3.62i)13-s + (1.36 − 4.19i)15-s + (2.23 + 1.62i)17-s + (−0.142 − 0.438i)19-s + 2.08·21-s + 6.31·23-s + (−0.165 − 0.508i)25-s + (−2.76 − 2.00i)27-s + (0.693 − 2.13i)29-s + (−2.67 + 1.94i)31-s + ⋯ |
L(s) = 1 | + (−0.372 − 1.14i)3-s + (0.764 + 0.555i)5-s + (−0.116 + 0.359i)7-s + (−0.367 + 0.267i)9-s + (−0.805 − 0.592i)11-s + (1.38 − 1.00i)13-s + (0.352 − 1.08i)15-s + (0.541 + 0.393i)17-s + (−0.0326 − 0.100i)19-s + 0.455·21-s + 1.31·23-s + (−0.0330 − 0.101i)25-s + (−0.532 − 0.386i)27-s + (0.128 − 0.396i)29-s + (−0.480 + 0.349i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.281 + 0.959i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.281 + 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.19364 - 0.894068i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19364 - 0.894068i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (2.67 + 1.96i)T \) |
good | 3 | \( 1 + (0.645 + 1.98i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (-1.70 - 1.24i)T + (1.54 + 4.75i)T^{2} \) |
| 13 | \( 1 + (-4.98 + 3.62i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.23 - 1.62i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (0.142 + 0.438i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 6.31T + 23T^{2} \) |
| 29 | \( 1 + (-0.693 + 2.13i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (2.67 - 1.94i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.26 + 6.95i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.0315 - 0.0970i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 3.33T + 43T^{2} \) |
| 47 | \( 1 + (2.56 + 7.88i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (10.1 - 7.37i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.636 + 1.95i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (2.15 + 1.56i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 5.10T + 67T^{2} \) |
| 71 | \( 1 + (-11.4 - 8.31i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (0.651 - 2.00i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-1.93 + 1.40i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-6.49 - 4.72i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 10.9T + 89T^{2} \) |
| 97 | \( 1 + (9.99 - 7.26i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.73345042976541322331182293827, −9.644783790392192331333720186226, −8.495086459075226834662463790238, −7.75937103700763838288745068622, −6.71064208366805988982927567297, −5.97111487880539918218884753873, −5.42566359333246566965838394674, −3.45602401570214832719401438291, −2.37551736154765562121957564007, −0.979011188043482530506362601443,
1.53160812047034509785150573316, 3.29852009936202648505077446282, 4.47783737305801165923088126964, 5.11924523453322672450319476154, 6.05789220271712297991806820819, 7.18228643219678665725729532878, 8.412982415576980743644359736857, 9.505418521297275640777555345690, 9.692302646732514764244419132142, 10.87409295717971019822567427717