L(s) = 1 | + (−0.645 + 1.98i)3-s + (1.70 − 1.24i)5-s + (−0.309 − 0.951i)7-s + (−1.10 − 0.801i)9-s + (−2.67 + 1.96i)11-s + (4.98 + 3.62i)13-s + (1.36 + 4.19i)15-s + (2.23 − 1.62i)17-s + (−0.142 + 0.438i)19-s + 2.08·21-s + 6.31·23-s + (−0.165 + 0.508i)25-s + (−2.76 + 2.00i)27-s + (0.693 + 2.13i)29-s + (−2.67 − 1.94i)31-s + ⋯ |
L(s) = 1 | + (−0.372 + 1.14i)3-s + (0.764 − 0.555i)5-s + (−0.116 − 0.359i)7-s + (−0.367 − 0.267i)9-s + (−0.805 + 0.592i)11-s + (1.38 + 1.00i)13-s + (0.352 + 1.08i)15-s + (0.541 − 0.393i)17-s + (−0.0326 + 0.100i)19-s + 0.455·21-s + 1.31·23-s + (−0.0330 + 0.101i)25-s + (−0.532 + 0.386i)27-s + (0.128 + 0.396i)29-s + (−0.480 − 0.349i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.281 - 0.959i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.281 - 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.19364 + 0.894068i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19364 + 0.894068i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.309 + 0.951i)T \) |
| 11 | \( 1 + (2.67 - 1.96i)T \) |
good | 3 | \( 1 + (0.645 - 1.98i)T + (-2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 + (-1.70 + 1.24i)T + (1.54 - 4.75i)T^{2} \) |
| 13 | \( 1 + (-4.98 - 3.62i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.23 + 1.62i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (0.142 - 0.438i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 6.31T + 23T^{2} \) |
| 29 | \( 1 + (-0.693 - 2.13i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (2.67 + 1.94i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.26 - 6.95i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.0315 + 0.0970i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 3.33T + 43T^{2} \) |
| 47 | \( 1 + (2.56 - 7.88i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (10.1 + 7.37i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.636 - 1.95i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (2.15 - 1.56i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 5.10T + 67T^{2} \) |
| 71 | \( 1 + (-11.4 + 8.31i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (0.651 + 2.00i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-1.93 - 1.40i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-6.49 + 4.72i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 10.9T + 89T^{2} \) |
| 97 | \( 1 + (9.99 + 7.26i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87409295717971019822567427717, −9.692302646732514764244419132142, −9.505418521297275640777555345690, −8.412982415576980743644359736857, −7.18228643219678665725729532878, −6.05789220271712297991806820819, −5.11924523453322672450319476154, −4.47783737305801165923088126964, −3.29852009936202648505077446282, −1.53160812047034509785150573316,
0.979011188043482530506362601443, 2.37551736154765562121957564007, 3.45602401570214832719401438291, 5.42566359333246566965838394674, 5.97111487880539918218884753873, 6.71064208366805988982927567297, 7.75937103700763838288745068622, 8.495086459075226834662463790238, 9.644783790392192331333720186226, 10.73345042976541322331182293827