L(s) = 1 | + 2.18·3-s + 2.34·5-s + 7·7-s − 22.2·9-s − 11·11-s − 21.0·13-s + 5.12·15-s + 86.0·17-s − 129.·19-s + 15.3·21-s + 109.·23-s − 119.·25-s − 107.·27-s − 149.·29-s − 284.·31-s − 24.0·33-s + 16.4·35-s − 107.·37-s − 46.0·39-s + 505.·41-s + 26.8·43-s − 52.0·45-s − 12.1·47-s + 49·49-s + 188.·51-s − 571.·53-s − 25.7·55-s + ⋯ |
L(s) = 1 | + 0.421·3-s + 0.209·5-s + 0.377·7-s − 0.822·9-s − 0.301·11-s − 0.449·13-s + 0.0882·15-s + 1.22·17-s − 1.56·19-s + 0.159·21-s + 0.992·23-s − 0.956·25-s − 0.767·27-s − 0.957·29-s − 1.64·31-s − 0.126·33-s + 0.0792·35-s − 0.476·37-s − 0.189·39-s + 1.92·41-s + 0.0951·43-s − 0.172·45-s − 0.0377·47-s + 0.142·49-s + 0.517·51-s − 1.48·53-s − 0.0631·55-s + ⋯ |
Λ(s)=(=(616s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(616s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−7T |
| 11 | 1+11T |
good | 3 | 1−2.18T+27T2 |
| 5 | 1−2.34T+125T2 |
| 13 | 1+21.0T+2.19e3T2 |
| 17 | 1−86.0T+4.91e3T2 |
| 19 | 1+129.T+6.85e3T2 |
| 23 | 1−109.T+1.21e4T2 |
| 29 | 1+149.T+2.43e4T2 |
| 31 | 1+284.T+2.97e4T2 |
| 37 | 1+107.T+5.06e4T2 |
| 41 | 1−505.T+6.89e4T2 |
| 43 | 1−26.8T+7.95e4T2 |
| 47 | 1+12.1T+1.03e5T2 |
| 53 | 1+571.T+1.48e5T2 |
| 59 | 1+53.0T+2.05e5T2 |
| 61 | 1+469.T+2.26e5T2 |
| 67 | 1−732.T+3.00e5T2 |
| 71 | 1−338.T+3.57e5T2 |
| 73 | 1+1.14e3T+3.89e5T2 |
| 79 | 1+156.T+4.93e5T2 |
| 83 | 1+960.T+5.71e5T2 |
| 89 | 1+466.T+7.04e5T2 |
| 97 | 1+126.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.640604134880118586568732573137, −8.946982887769362984662835010103, −8.014520242179649609807461754021, −7.34252774801274780904707278729, −5.98356511243440000664740212127, −5.29250387270163217201251430345, −4.00504752181082623528343567728, −2.86312927513021288933869135879, −1.79332899796971248873645869926, 0,
1.79332899796971248873645869926, 2.86312927513021288933869135879, 4.00504752181082623528343567728, 5.29250387270163217201251430345, 5.98356511243440000664740212127, 7.34252774801274780904707278729, 8.014520242179649609807461754021, 8.946982887769362984662835010103, 9.640604134880118586568732573137