Properties

Label 616.4.a.h.1.4
Level $616$
Weight $4$
Character 616.1
Self dual yes
Analytic conductor $36.345$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [616,4,Mod(1,616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("616.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.3451765635\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 94x^{4} + 161x^{3} + 533x^{2} - 384x - 468 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.85526\) of defining polynomial
Character \(\chi\) \(=\) 616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.18857 q^{3} +2.34292 q^{5} +7.00000 q^{7} -22.2102 q^{9} -11.0000 q^{11} -21.0600 q^{13} +5.12765 q^{15} +86.0692 q^{17} -129.304 q^{19} +15.3200 q^{21} +109.478 q^{23} -119.511 q^{25} -107.700 q^{27} -149.527 q^{29} -284.780 q^{31} -24.0743 q^{33} +16.4004 q^{35} -107.219 q^{37} -46.0913 q^{39} +505.363 q^{41} +26.8319 q^{43} -52.0366 q^{45} -12.1730 q^{47} +49.0000 q^{49} +188.368 q^{51} -571.361 q^{53} -25.7721 q^{55} -282.990 q^{57} -53.0539 q^{59} -469.509 q^{61} -155.471 q^{63} -49.3419 q^{65} +732.490 q^{67} +239.601 q^{69} +338.314 q^{71} -1142.10 q^{73} -261.558 q^{75} -77.0000 q^{77} -156.015 q^{79} +363.966 q^{81} -960.073 q^{83} +201.653 q^{85} -327.250 q^{87} -466.178 q^{89} -147.420 q^{91} -623.260 q^{93} -302.948 q^{95} -126.097 q^{97} +244.312 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 14 q^{5} + 42 q^{7} + 28 q^{9} - 66 q^{11} - 70 q^{13} - 50 q^{15} - 102 q^{17} - 136 q^{19} - 146 q^{23} + 44 q^{25} - 30 q^{27} - 148 q^{29} + 308 q^{31} - 98 q^{35} - 6 q^{37} - 540 q^{39} - 90 q^{41}+ \cdots - 308 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.18857 0.421190 0.210595 0.977573i \(-0.432460\pi\)
0.210595 + 0.977573i \(0.432460\pi\)
\(4\) 0 0
\(5\) 2.34292 0.209557 0.104779 0.994496i \(-0.466587\pi\)
0.104779 + 0.994496i \(0.466587\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) −22.2102 −0.822599
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −21.0600 −0.449307 −0.224654 0.974439i \(-0.572125\pi\)
−0.224654 + 0.974439i \(0.572125\pi\)
\(14\) 0 0
\(15\) 5.12765 0.0882635
\(16\) 0 0
\(17\) 86.0692 1.22793 0.613966 0.789332i \(-0.289573\pi\)
0.613966 + 0.789332i \(0.289573\pi\)
\(18\) 0 0
\(19\) −129.304 −1.56128 −0.780639 0.624983i \(-0.785106\pi\)
−0.780639 + 0.624983i \(0.785106\pi\)
\(20\) 0 0
\(21\) 15.3200 0.159195
\(22\) 0 0
\(23\) 109.478 0.992514 0.496257 0.868176i \(-0.334707\pi\)
0.496257 + 0.868176i \(0.334707\pi\)
\(24\) 0 0
\(25\) −119.511 −0.956086
\(26\) 0 0
\(27\) −107.700 −0.767661
\(28\) 0 0
\(29\) −149.527 −0.957463 −0.478731 0.877961i \(-0.658903\pi\)
−0.478731 + 0.877961i \(0.658903\pi\)
\(30\) 0 0
\(31\) −284.780 −1.64993 −0.824967 0.565181i \(-0.808806\pi\)
−0.824967 + 0.565181i \(0.808806\pi\)
\(32\) 0 0
\(33\) −24.0743 −0.126994
\(34\) 0 0
\(35\) 16.4004 0.0792052
\(36\) 0 0
\(37\) −107.219 −0.476399 −0.238199 0.971216i \(-0.576557\pi\)
−0.238199 + 0.971216i \(0.576557\pi\)
\(38\) 0 0
\(39\) −46.0913 −0.189244
\(40\) 0 0
\(41\) 505.363 1.92499 0.962493 0.271308i \(-0.0874562\pi\)
0.962493 + 0.271308i \(0.0874562\pi\)
\(42\) 0 0
\(43\) 26.8319 0.0951586 0.0475793 0.998867i \(-0.484849\pi\)
0.0475793 + 0.998867i \(0.484849\pi\)
\(44\) 0 0
\(45\) −52.0366 −0.172381
\(46\) 0 0
\(47\) −12.1730 −0.0377791 −0.0188896 0.999822i \(-0.506013\pi\)
−0.0188896 + 0.999822i \(0.506013\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 188.368 0.517193
\(52\) 0 0
\(53\) −571.361 −1.48080 −0.740401 0.672166i \(-0.765364\pi\)
−0.740401 + 0.672166i \(0.765364\pi\)
\(54\) 0 0
\(55\) −25.7721 −0.0631839
\(56\) 0 0
\(57\) −282.990 −0.657595
\(58\) 0 0
\(59\) −53.0539 −0.117068 −0.0585341 0.998285i \(-0.518643\pi\)
−0.0585341 + 0.998285i \(0.518643\pi\)
\(60\) 0 0
\(61\) −469.509 −0.985484 −0.492742 0.870176i \(-0.664005\pi\)
−0.492742 + 0.870176i \(0.664005\pi\)
\(62\) 0 0
\(63\) −155.471 −0.310913
\(64\) 0 0
\(65\) −49.3419 −0.0941556
\(66\) 0 0
\(67\) 732.490 1.33564 0.667820 0.744323i \(-0.267228\pi\)
0.667820 + 0.744323i \(0.267228\pi\)
\(68\) 0 0
\(69\) 239.601 0.418037
\(70\) 0 0
\(71\) 338.314 0.565500 0.282750 0.959194i \(-0.408753\pi\)
0.282750 + 0.959194i \(0.408753\pi\)
\(72\) 0 0
\(73\) −1142.10 −1.83114 −0.915569 0.402160i \(-0.868259\pi\)
−0.915569 + 0.402160i \(0.868259\pi\)
\(74\) 0 0
\(75\) −261.558 −0.402694
\(76\) 0 0
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −156.015 −0.222191 −0.111095 0.993810i \(-0.535436\pi\)
−0.111095 + 0.993810i \(0.535436\pi\)
\(80\) 0 0
\(81\) 363.966 0.499267
\(82\) 0 0
\(83\) −960.073 −1.26966 −0.634830 0.772652i \(-0.718930\pi\)
−0.634830 + 0.772652i \(0.718930\pi\)
\(84\) 0 0
\(85\) 201.653 0.257322
\(86\) 0 0
\(87\) −327.250 −0.403274
\(88\) 0 0
\(89\) −466.178 −0.555222 −0.277611 0.960694i \(-0.589543\pi\)
−0.277611 + 0.960694i \(0.589543\pi\)
\(90\) 0 0
\(91\) −147.420 −0.169822
\(92\) 0 0
\(93\) −623.260 −0.694936
\(94\) 0 0
\(95\) −302.948 −0.327177
\(96\) 0 0
\(97\) −126.097 −0.131992 −0.0659960 0.997820i \(-0.521022\pi\)
−0.0659960 + 0.997820i \(0.521022\pi\)
\(98\) 0 0
\(99\) 244.312 0.248023
\(100\) 0 0
\(101\) −575.121 −0.566600 −0.283300 0.959031i \(-0.591429\pi\)
−0.283300 + 0.959031i \(0.591429\pi\)
\(102\) 0 0
\(103\) 21.2830 0.0203600 0.0101800 0.999948i \(-0.496760\pi\)
0.0101800 + 0.999948i \(0.496760\pi\)
\(104\) 0 0
\(105\) 35.8935 0.0333605
\(106\) 0 0
\(107\) −1738.63 −1.57083 −0.785417 0.618967i \(-0.787551\pi\)
−0.785417 + 0.618967i \(0.787551\pi\)
\(108\) 0 0
\(109\) 1730.40 1.52057 0.760287 0.649587i \(-0.225058\pi\)
0.760287 + 0.649587i \(0.225058\pi\)
\(110\) 0 0
\(111\) −234.657 −0.200655
\(112\) 0 0
\(113\) −1525.71 −1.27015 −0.635075 0.772451i \(-0.719031\pi\)
−0.635075 + 0.772451i \(0.719031\pi\)
\(114\) 0 0
\(115\) 256.499 0.207988
\(116\) 0 0
\(117\) 467.746 0.369600
\(118\) 0 0
\(119\) 602.484 0.464115
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 1106.02 0.810785
\(124\) 0 0
\(125\) −572.869 −0.409912
\(126\) 0 0
\(127\) 74.4626 0.0520274 0.0260137 0.999662i \(-0.491719\pi\)
0.0260137 + 0.999662i \(0.491719\pi\)
\(128\) 0 0
\(129\) 58.7234 0.0400799
\(130\) 0 0
\(131\) 2364.83 1.57722 0.788610 0.614893i \(-0.210801\pi\)
0.788610 + 0.614893i \(0.210801\pi\)
\(132\) 0 0
\(133\) −905.125 −0.590107
\(134\) 0 0
\(135\) −252.332 −0.160869
\(136\) 0 0
\(137\) −2120.20 −1.32220 −0.661098 0.750300i \(-0.729909\pi\)
−0.661098 + 0.750300i \(0.729909\pi\)
\(138\) 0 0
\(139\) 67.9829 0.0414837 0.0207418 0.999785i \(-0.493397\pi\)
0.0207418 + 0.999785i \(0.493397\pi\)
\(140\) 0 0
\(141\) −26.6415 −0.0159122
\(142\) 0 0
\(143\) 231.660 0.135471
\(144\) 0 0
\(145\) −350.329 −0.200643
\(146\) 0 0
\(147\) 107.240 0.0601701
\(148\) 0 0
\(149\) 69.6488 0.0382943 0.0191472 0.999817i \(-0.493905\pi\)
0.0191472 + 0.999817i \(0.493905\pi\)
\(150\) 0 0
\(151\) −1558.63 −0.839998 −0.419999 0.907525i \(-0.637970\pi\)
−0.419999 + 0.907525i \(0.637970\pi\)
\(152\) 0 0
\(153\) −1911.61 −1.01010
\(154\) 0 0
\(155\) −667.216 −0.345756
\(156\) 0 0
\(157\) −883.194 −0.448959 −0.224479 0.974479i \(-0.572068\pi\)
−0.224479 + 0.974479i \(0.572068\pi\)
\(158\) 0 0
\(159\) −1250.46 −0.623699
\(160\) 0 0
\(161\) 766.348 0.375135
\(162\) 0 0
\(163\) 2924.36 1.40524 0.702618 0.711567i \(-0.252014\pi\)
0.702618 + 0.711567i \(0.252014\pi\)
\(164\) 0 0
\(165\) −56.4041 −0.0266124
\(166\) 0 0
\(167\) 2628.35 1.21789 0.608945 0.793212i \(-0.291593\pi\)
0.608945 + 0.793212i \(0.291593\pi\)
\(168\) 0 0
\(169\) −1753.48 −0.798123
\(170\) 0 0
\(171\) 2871.85 1.28430
\(172\) 0 0
\(173\) −4201.35 −1.84638 −0.923188 0.384349i \(-0.874426\pi\)
−0.923188 + 0.384349i \(0.874426\pi\)
\(174\) 0 0
\(175\) −836.575 −0.361366
\(176\) 0 0
\(177\) −116.112 −0.0493080
\(178\) 0 0
\(179\) −1671.06 −0.697770 −0.348885 0.937166i \(-0.613440\pi\)
−0.348885 + 0.937166i \(0.613440\pi\)
\(180\) 0 0
\(181\) 2368.14 0.972500 0.486250 0.873820i \(-0.338365\pi\)
0.486250 + 0.873820i \(0.338365\pi\)
\(182\) 0 0
\(183\) −1027.55 −0.415076
\(184\) 0 0
\(185\) −251.206 −0.0998327
\(186\) 0 0
\(187\) −946.761 −0.370235
\(188\) 0 0
\(189\) −753.899 −0.290149
\(190\) 0 0
\(191\) 4229.06 1.60212 0.801059 0.598586i \(-0.204271\pi\)
0.801059 + 0.598586i \(0.204271\pi\)
\(192\) 0 0
\(193\) 2734.96 1.02004 0.510018 0.860164i \(-0.329639\pi\)
0.510018 + 0.860164i \(0.329639\pi\)
\(194\) 0 0
\(195\) −107.988 −0.0396574
\(196\) 0 0
\(197\) 280.720 0.101525 0.0507626 0.998711i \(-0.483835\pi\)
0.0507626 + 0.998711i \(0.483835\pi\)
\(198\) 0 0
\(199\) 1484.60 0.528847 0.264423 0.964407i \(-0.414818\pi\)
0.264423 + 0.964407i \(0.414818\pi\)
\(200\) 0 0
\(201\) 1603.11 0.562559
\(202\) 0 0
\(203\) −1046.69 −0.361887
\(204\) 0 0
\(205\) 1184.02 0.403394
\(206\) 0 0
\(207\) −2431.53 −0.816440
\(208\) 0 0
\(209\) 1422.34 0.470743
\(210\) 0 0
\(211\) 977.779 0.319019 0.159510 0.987196i \(-0.449009\pi\)
0.159510 + 0.987196i \(0.449009\pi\)
\(212\) 0 0
\(213\) 740.424 0.238183
\(214\) 0 0
\(215\) 62.8649 0.0199412
\(216\) 0 0
\(217\) −1993.46 −0.623616
\(218\) 0 0
\(219\) −2499.57 −0.771258
\(220\) 0 0
\(221\) −1812.62 −0.551719
\(222\) 0 0
\(223\) 5596.83 1.68068 0.840340 0.542060i \(-0.182356\pi\)
0.840340 + 0.542060i \(0.182356\pi\)
\(224\) 0 0
\(225\) 2654.35 0.786475
\(226\) 0 0
\(227\) −1441.89 −0.421592 −0.210796 0.977530i \(-0.567606\pi\)
−0.210796 + 0.977530i \(0.567606\pi\)
\(228\) 0 0
\(229\) −6321.63 −1.82422 −0.912108 0.409950i \(-0.865546\pi\)
−0.912108 + 0.409950i \(0.865546\pi\)
\(230\) 0 0
\(231\) −168.520 −0.0479991
\(232\) 0 0
\(233\) −6821.76 −1.91806 −0.959030 0.283303i \(-0.908570\pi\)
−0.959030 + 0.283303i \(0.908570\pi\)
\(234\) 0 0
\(235\) −28.5204 −0.00791689
\(236\) 0 0
\(237\) −341.450 −0.0935847
\(238\) 0 0
\(239\) 6951.18 1.88131 0.940657 0.339358i \(-0.110210\pi\)
0.940657 + 0.339358i \(0.110210\pi\)
\(240\) 0 0
\(241\) −161.993 −0.0432982 −0.0216491 0.999766i \(-0.506892\pi\)
−0.0216491 + 0.999766i \(0.506892\pi\)
\(242\) 0 0
\(243\) 3704.46 0.977948
\(244\) 0 0
\(245\) 114.803 0.0299367
\(246\) 0 0
\(247\) 2723.13 0.701493
\(248\) 0 0
\(249\) −2101.19 −0.534768
\(250\) 0 0
\(251\) 4527.58 1.13856 0.569279 0.822144i \(-0.307222\pi\)
0.569279 + 0.822144i \(0.307222\pi\)
\(252\) 0 0
\(253\) −1204.26 −0.299254
\(254\) 0 0
\(255\) 441.332 0.108382
\(256\) 0 0
\(257\) 7111.31 1.72604 0.863018 0.505173i \(-0.168571\pi\)
0.863018 + 0.505173i \(0.168571\pi\)
\(258\) 0 0
\(259\) −750.535 −0.180062
\(260\) 0 0
\(261\) 3321.01 0.787608
\(262\) 0 0
\(263\) 6203.83 1.45454 0.727271 0.686350i \(-0.240788\pi\)
0.727271 + 0.686350i \(0.240788\pi\)
\(264\) 0 0
\(265\) −1338.65 −0.310313
\(266\) 0 0
\(267\) −1020.26 −0.233854
\(268\) 0 0
\(269\) 658.858 0.149336 0.0746678 0.997208i \(-0.476210\pi\)
0.0746678 + 0.997208i \(0.476210\pi\)
\(270\) 0 0
\(271\) −1810.66 −0.405867 −0.202933 0.979193i \(-0.565048\pi\)
−0.202933 + 0.979193i \(0.565048\pi\)
\(272\) 0 0
\(273\) −322.639 −0.0715275
\(274\) 0 0
\(275\) 1314.62 0.288271
\(276\) 0 0
\(277\) 7278.51 1.57878 0.789392 0.613889i \(-0.210396\pi\)
0.789392 + 0.613889i \(0.210396\pi\)
\(278\) 0 0
\(279\) 6325.00 1.35723
\(280\) 0 0
\(281\) −3301.95 −0.700988 −0.350494 0.936565i \(-0.613986\pi\)
−0.350494 + 0.936565i \(0.613986\pi\)
\(282\) 0 0
\(283\) 2303.26 0.483797 0.241898 0.970302i \(-0.422230\pi\)
0.241898 + 0.970302i \(0.422230\pi\)
\(284\) 0 0
\(285\) −663.023 −0.137804
\(286\) 0 0
\(287\) 3537.54 0.727576
\(288\) 0 0
\(289\) 2494.90 0.507817
\(290\) 0 0
\(291\) −275.972 −0.0555938
\(292\) 0 0
\(293\) 7617.46 1.51883 0.759414 0.650608i \(-0.225486\pi\)
0.759414 + 0.650608i \(0.225486\pi\)
\(294\) 0 0
\(295\) −124.301 −0.0245325
\(296\) 0 0
\(297\) 1184.70 0.231459
\(298\) 0 0
\(299\) −2305.61 −0.445944
\(300\) 0 0
\(301\) 187.823 0.0359666
\(302\) 0 0
\(303\) −1258.69 −0.238647
\(304\) 0 0
\(305\) −1100.02 −0.206515
\(306\) 0 0
\(307\) −7069.50 −1.31426 −0.657130 0.753778i \(-0.728230\pi\)
−0.657130 + 0.753778i \(0.728230\pi\)
\(308\) 0 0
\(309\) 46.5793 0.00857542
\(310\) 0 0
\(311\) −3185.90 −0.580887 −0.290444 0.956892i \(-0.593803\pi\)
−0.290444 + 0.956892i \(0.593803\pi\)
\(312\) 0 0
\(313\) 4496.13 0.811937 0.405968 0.913887i \(-0.366934\pi\)
0.405968 + 0.913887i \(0.366934\pi\)
\(314\) 0 0
\(315\) −364.257 −0.0651541
\(316\) 0 0
\(317\) 6385.29 1.13134 0.565668 0.824633i \(-0.308618\pi\)
0.565668 + 0.824633i \(0.308618\pi\)
\(318\) 0 0
\(319\) 1644.79 0.288686
\(320\) 0 0
\(321\) −3805.10 −0.661620
\(322\) 0 0
\(323\) −11129.1 −1.91714
\(324\) 0 0
\(325\) 2516.90 0.429576
\(326\) 0 0
\(327\) 3787.11 0.640451
\(328\) 0 0
\(329\) −85.2112 −0.0142792
\(330\) 0 0
\(331\) −4218.42 −0.700500 −0.350250 0.936656i \(-0.613903\pi\)
−0.350250 + 0.936656i \(0.613903\pi\)
\(332\) 0 0
\(333\) 2381.36 0.391885
\(334\) 0 0
\(335\) 1716.17 0.279893
\(336\) 0 0
\(337\) −10964.8 −1.77237 −0.886184 0.463333i \(-0.846653\pi\)
−0.886184 + 0.463333i \(0.846653\pi\)
\(338\) 0 0
\(339\) −3339.13 −0.534975
\(340\) 0 0
\(341\) 3132.58 0.497474
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) 561.366 0.0876027
\(346\) 0 0
\(347\) 3382.36 0.523269 0.261635 0.965167i \(-0.415738\pi\)
0.261635 + 0.965167i \(0.415738\pi\)
\(348\) 0 0
\(349\) 4210.80 0.645843 0.322921 0.946426i \(-0.395335\pi\)
0.322921 + 0.946426i \(0.395335\pi\)
\(350\) 0 0
\(351\) 2268.16 0.344916
\(352\) 0 0
\(353\) 2407.73 0.363032 0.181516 0.983388i \(-0.441900\pi\)
0.181516 + 0.983388i \(0.441900\pi\)
\(354\) 0 0
\(355\) 792.643 0.118505
\(356\) 0 0
\(357\) 1318.58 0.195481
\(358\) 0 0
\(359\) −8561.82 −1.25871 −0.629353 0.777119i \(-0.716680\pi\)
−0.629353 + 0.777119i \(0.716680\pi\)
\(360\) 0 0
\(361\) 9860.41 1.43759
\(362\) 0 0
\(363\) 264.817 0.0382900
\(364\) 0 0
\(365\) −2675.86 −0.383728
\(366\) 0 0
\(367\) 6176.88 0.878557 0.439279 0.898351i \(-0.355234\pi\)
0.439279 + 0.898351i \(0.355234\pi\)
\(368\) 0 0
\(369\) −11224.2 −1.58349
\(370\) 0 0
\(371\) −3999.53 −0.559690
\(372\) 0 0
\(373\) −7251.55 −1.00662 −0.503312 0.864105i \(-0.667885\pi\)
−0.503312 + 0.864105i \(0.667885\pi\)
\(374\) 0 0
\(375\) −1253.76 −0.172651
\(376\) 0 0
\(377\) 3149.03 0.430195
\(378\) 0 0
\(379\) 13777.1 1.86724 0.933618 0.358271i \(-0.116634\pi\)
0.933618 + 0.358271i \(0.116634\pi\)
\(380\) 0 0
\(381\) 162.966 0.0219135
\(382\) 0 0
\(383\) −7034.63 −0.938519 −0.469260 0.883060i \(-0.655479\pi\)
−0.469260 + 0.883060i \(0.655479\pi\)
\(384\) 0 0
\(385\) −180.405 −0.0238813
\(386\) 0 0
\(387\) −595.940 −0.0782774
\(388\) 0 0
\(389\) 3261.11 0.425051 0.212525 0.977156i \(-0.431831\pi\)
0.212525 + 0.977156i \(0.431831\pi\)
\(390\) 0 0
\(391\) 9422.71 1.21874
\(392\) 0 0
\(393\) 5175.59 0.664310
\(394\) 0 0
\(395\) −365.531 −0.0465617
\(396\) 0 0
\(397\) 5777.15 0.730345 0.365172 0.930940i \(-0.381010\pi\)
0.365172 + 0.930940i \(0.381010\pi\)
\(398\) 0 0
\(399\) −1980.93 −0.248548
\(400\) 0 0
\(401\) 2182.14 0.271748 0.135874 0.990726i \(-0.456616\pi\)
0.135874 + 0.990726i \(0.456616\pi\)
\(402\) 0 0
\(403\) 5997.46 0.741327
\(404\) 0 0
\(405\) 852.743 0.104625
\(406\) 0 0
\(407\) 1179.41 0.143640
\(408\) 0 0
\(409\) 10596.4 1.28107 0.640537 0.767927i \(-0.278712\pi\)
0.640537 + 0.767927i \(0.278712\pi\)
\(410\) 0 0
\(411\) −4640.20 −0.556896
\(412\) 0 0
\(413\) −371.377 −0.0442476
\(414\) 0 0
\(415\) −2249.38 −0.266066
\(416\) 0 0
\(417\) 148.785 0.0174725
\(418\) 0 0
\(419\) 5499.18 0.641176 0.320588 0.947219i \(-0.396120\pi\)
0.320588 + 0.947219i \(0.396120\pi\)
\(420\) 0 0
\(421\) −9544.04 −1.10486 −0.552432 0.833558i \(-0.686300\pi\)
−0.552432 + 0.833558i \(0.686300\pi\)
\(422\) 0 0
\(423\) 270.365 0.0310771
\(424\) 0 0
\(425\) −10286.2 −1.17401
\(426\) 0 0
\(427\) −3286.56 −0.372478
\(428\) 0 0
\(429\) 507.004 0.0570592
\(430\) 0 0
\(431\) −16427.9 −1.83597 −0.917985 0.396616i \(-0.870184\pi\)
−0.917985 + 0.396616i \(0.870184\pi\)
\(432\) 0 0
\(433\) 3266.92 0.362583 0.181291 0.983429i \(-0.441972\pi\)
0.181291 + 0.983429i \(0.441972\pi\)
\(434\) 0 0
\(435\) −766.720 −0.0845090
\(436\) 0 0
\(437\) −14155.9 −1.54959
\(438\) 0 0
\(439\) −3974.88 −0.432142 −0.216071 0.976378i \(-0.569324\pi\)
−0.216071 + 0.976378i \(0.569324\pi\)
\(440\) 0 0
\(441\) −1088.30 −0.117514
\(442\) 0 0
\(443\) −12617.3 −1.35320 −0.676598 0.736353i \(-0.736546\pi\)
−0.676598 + 0.736353i \(0.736546\pi\)
\(444\) 0 0
\(445\) −1092.22 −0.116351
\(446\) 0 0
\(447\) 152.431 0.0161292
\(448\) 0 0
\(449\) −1589.76 −0.167094 −0.0835470 0.996504i \(-0.526625\pi\)
−0.0835470 + 0.996504i \(0.526625\pi\)
\(450\) 0 0
\(451\) −5558.99 −0.580405
\(452\) 0 0
\(453\) −3411.18 −0.353799
\(454\) 0 0
\(455\) −345.393 −0.0355875
\(456\) 0 0
\(457\) −8883.91 −0.909347 −0.454673 0.890658i \(-0.650244\pi\)
−0.454673 + 0.890658i \(0.650244\pi\)
\(458\) 0 0
\(459\) −9269.64 −0.942636
\(460\) 0 0
\(461\) 1614.34 0.163096 0.0815480 0.996669i \(-0.474014\pi\)
0.0815480 + 0.996669i \(0.474014\pi\)
\(462\) 0 0
\(463\) −969.325 −0.0972967 −0.0486483 0.998816i \(-0.515491\pi\)
−0.0486483 + 0.998816i \(0.515491\pi\)
\(464\) 0 0
\(465\) −1460.25 −0.145629
\(466\) 0 0
\(467\) −11104.3 −1.10031 −0.550156 0.835062i \(-0.685432\pi\)
−0.550156 + 0.835062i \(0.685432\pi\)
\(468\) 0 0
\(469\) 5127.43 0.504824
\(470\) 0 0
\(471\) −1932.93 −0.189097
\(472\) 0 0
\(473\) −295.151 −0.0286914
\(474\) 0 0
\(475\) 15453.2 1.49272
\(476\) 0 0
\(477\) 12690.0 1.21811
\(478\) 0 0
\(479\) 16429.7 1.56721 0.783605 0.621260i \(-0.213379\pi\)
0.783605 + 0.621260i \(0.213379\pi\)
\(480\) 0 0
\(481\) 2258.04 0.214049
\(482\) 0 0
\(483\) 1677.21 0.158003
\(484\) 0 0
\(485\) −295.436 −0.0276599
\(486\) 0 0
\(487\) 8110.29 0.754645 0.377323 0.926082i \(-0.376845\pi\)
0.377323 + 0.926082i \(0.376845\pi\)
\(488\) 0 0
\(489\) 6400.17 0.591872
\(490\) 0 0
\(491\) −10499.5 −0.965041 −0.482520 0.875885i \(-0.660279\pi\)
−0.482520 + 0.875885i \(0.660279\pi\)
\(492\) 0 0
\(493\) −12869.6 −1.17570
\(494\) 0 0
\(495\) 572.403 0.0519750
\(496\) 0 0
\(497\) 2368.20 0.213739
\(498\) 0 0
\(499\) −14154.9 −1.26986 −0.634931 0.772569i \(-0.718971\pi\)
−0.634931 + 0.772569i \(0.718971\pi\)
\(500\) 0 0
\(501\) 5752.32 0.512964
\(502\) 0 0
\(503\) −6130.51 −0.543431 −0.271716 0.962378i \(-0.587591\pi\)
−0.271716 + 0.962378i \(0.587591\pi\)
\(504\) 0 0
\(505\) −1347.46 −0.118735
\(506\) 0 0
\(507\) −3837.60 −0.336162
\(508\) 0 0
\(509\) −7607.48 −0.662467 −0.331233 0.943549i \(-0.607465\pi\)
−0.331233 + 0.943549i \(0.607465\pi\)
\(510\) 0 0
\(511\) −7994.72 −0.692105
\(512\) 0 0
\(513\) 13926.0 1.19853
\(514\) 0 0
\(515\) 49.8644 0.00426658
\(516\) 0 0
\(517\) 133.903 0.0113908
\(518\) 0 0
\(519\) −9194.96 −0.777676
\(520\) 0 0
\(521\) 10821.4 0.909970 0.454985 0.890499i \(-0.349645\pi\)
0.454985 + 0.890499i \(0.349645\pi\)
\(522\) 0 0
\(523\) −2274.36 −0.190155 −0.0950773 0.995470i \(-0.530310\pi\)
−0.0950773 + 0.995470i \(0.530310\pi\)
\(524\) 0 0
\(525\) −1830.90 −0.152204
\(526\) 0 0
\(527\) −24510.8 −2.02601
\(528\) 0 0
\(529\) −181.491 −0.0149167
\(530\) 0 0
\(531\) 1178.33 0.0963001
\(532\) 0 0
\(533\) −10642.9 −0.864910
\(534\) 0 0
\(535\) −4073.46 −0.329180
\(536\) 0 0
\(537\) −3657.23 −0.293894
\(538\) 0 0
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −20620.6 −1.63872 −0.819362 0.573276i \(-0.805672\pi\)
−0.819362 + 0.573276i \(0.805672\pi\)
\(542\) 0 0
\(543\) 5182.84 0.409608
\(544\) 0 0
\(545\) 4054.20 0.318647
\(546\) 0 0
\(547\) −8404.71 −0.656964 −0.328482 0.944510i \(-0.606537\pi\)
−0.328482 + 0.944510i \(0.606537\pi\)
\(548\) 0 0
\(549\) 10427.9 0.810657
\(550\) 0 0
\(551\) 19334.3 1.49487
\(552\) 0 0
\(553\) −1092.11 −0.0839803
\(554\) 0 0
\(555\) −549.783 −0.0420486
\(556\) 0 0
\(557\) −8712.75 −0.662785 −0.331393 0.943493i \(-0.607518\pi\)
−0.331393 + 0.943493i \(0.607518\pi\)
\(558\) 0 0
\(559\) −565.079 −0.0427555
\(560\) 0 0
\(561\) −2072.05 −0.155940
\(562\) 0 0
\(563\) −20867.8 −1.56212 −0.781058 0.624459i \(-0.785320\pi\)
−0.781058 + 0.624459i \(0.785320\pi\)
\(564\) 0 0
\(565\) −3574.62 −0.266169
\(566\) 0 0
\(567\) 2547.76 0.188705
\(568\) 0 0
\(569\) −9186.30 −0.676818 −0.338409 0.940999i \(-0.609889\pi\)
−0.338409 + 0.940999i \(0.609889\pi\)
\(570\) 0 0
\(571\) −18199.1 −1.33382 −0.666908 0.745140i \(-0.732383\pi\)
−0.666908 + 0.745140i \(0.732383\pi\)
\(572\) 0 0
\(573\) 9255.60 0.674796
\(574\) 0 0
\(575\) −13083.8 −0.948928
\(576\) 0 0
\(577\) 6516.00 0.470130 0.235065 0.971980i \(-0.424470\pi\)
0.235065 + 0.971980i \(0.424470\pi\)
\(578\) 0 0
\(579\) 5985.65 0.429629
\(580\) 0 0
\(581\) −6720.51 −0.479886
\(582\) 0 0
\(583\) 6284.97 0.446478
\(584\) 0 0
\(585\) 1095.89 0.0774522
\(586\) 0 0
\(587\) 13888.2 0.976539 0.488269 0.872693i \(-0.337628\pi\)
0.488269 + 0.872693i \(0.337628\pi\)
\(588\) 0 0
\(589\) 36823.0 2.57600
\(590\) 0 0
\(591\) 614.375 0.0427614
\(592\) 0 0
\(593\) −8551.96 −0.592221 −0.296110 0.955154i \(-0.595690\pi\)
−0.296110 + 0.955154i \(0.595690\pi\)
\(594\) 0 0
\(595\) 1411.57 0.0972586
\(596\) 0 0
\(597\) 3249.15 0.222745
\(598\) 0 0
\(599\) 20061.7 1.36845 0.684224 0.729272i \(-0.260141\pi\)
0.684224 + 0.729272i \(0.260141\pi\)
\(600\) 0 0
\(601\) −3216.14 −0.218285 −0.109142 0.994026i \(-0.534810\pi\)
−0.109142 + 0.994026i \(0.534810\pi\)
\(602\) 0 0
\(603\) −16268.7 −1.09870
\(604\) 0 0
\(605\) 283.493 0.0190507
\(606\) 0 0
\(607\) 8911.67 0.595903 0.297952 0.954581i \(-0.403697\pi\)
0.297952 + 0.954581i \(0.403697\pi\)
\(608\) 0 0
\(609\) −2290.75 −0.152423
\(610\) 0 0
\(611\) 256.364 0.0169744
\(612\) 0 0
\(613\) 8512.29 0.560862 0.280431 0.959874i \(-0.409523\pi\)
0.280431 + 0.959874i \(0.409523\pi\)
\(614\) 0 0
\(615\) 2591.32 0.169906
\(616\) 0 0
\(617\) −22502.8 −1.46828 −0.734140 0.678998i \(-0.762414\pi\)
−0.734140 + 0.678998i \(0.762414\pi\)
\(618\) 0 0
\(619\) −2927.69 −0.190103 −0.0950515 0.995472i \(-0.530302\pi\)
−0.0950515 + 0.995472i \(0.530302\pi\)
\(620\) 0 0
\(621\) −11790.8 −0.761914
\(622\) 0 0
\(623\) −3263.25 −0.209854
\(624\) 0 0
\(625\) 13596.7 0.870186
\(626\) 0 0
\(627\) 3112.89 0.198272
\(628\) 0 0
\(629\) −9228.28 −0.584985
\(630\) 0 0
\(631\) 21948.4 1.38471 0.692354 0.721558i \(-0.256574\pi\)
0.692354 + 0.721558i \(0.256574\pi\)
\(632\) 0 0
\(633\) 2139.94 0.134368
\(634\) 0 0
\(635\) 174.460 0.0109027
\(636\) 0 0
\(637\) −1031.94 −0.0641868
\(638\) 0 0
\(639\) −7514.01 −0.465179
\(640\) 0 0
\(641\) 6200.42 0.382062 0.191031 0.981584i \(-0.438817\pi\)
0.191031 + 0.981584i \(0.438817\pi\)
\(642\) 0 0
\(643\) −1727.66 −0.105960 −0.0529799 0.998596i \(-0.516872\pi\)
−0.0529799 + 0.998596i \(0.516872\pi\)
\(644\) 0 0
\(645\) 137.584 0.00839903
\(646\) 0 0
\(647\) 7608.11 0.462296 0.231148 0.972919i \(-0.425752\pi\)
0.231148 + 0.972919i \(0.425752\pi\)
\(648\) 0 0
\(649\) 583.592 0.0352974
\(650\) 0 0
\(651\) −4362.82 −0.262661
\(652\) 0 0
\(653\) 12218.9 0.732254 0.366127 0.930565i \(-0.380684\pi\)
0.366127 + 0.930565i \(0.380684\pi\)
\(654\) 0 0
\(655\) 5540.60 0.330518
\(656\) 0 0
\(657\) 25366.3 1.50629
\(658\) 0 0
\(659\) −20384.1 −1.20493 −0.602466 0.798145i \(-0.705815\pi\)
−0.602466 + 0.798145i \(0.705815\pi\)
\(660\) 0 0
\(661\) −4458.36 −0.262345 −0.131173 0.991360i \(-0.541874\pi\)
−0.131173 + 0.991360i \(0.541874\pi\)
\(662\) 0 0
\(663\) −3967.04 −0.232379
\(664\) 0 0
\(665\) −2120.64 −0.123661
\(666\) 0 0
\(667\) −16369.9 −0.950295
\(668\) 0 0
\(669\) 12249.1 0.707886
\(670\) 0 0
\(671\) 5164.60 0.297134
\(672\) 0 0
\(673\) −30812.3 −1.76483 −0.882413 0.470476i \(-0.844082\pi\)
−0.882413 + 0.470476i \(0.844082\pi\)
\(674\) 0 0
\(675\) 12871.3 0.733950
\(676\) 0 0
\(677\) 18805.9 1.06761 0.533804 0.845608i \(-0.320762\pi\)
0.533804 + 0.845608i \(0.320762\pi\)
\(678\) 0 0
\(679\) −882.680 −0.0498883
\(680\) 0 0
\(681\) −3155.67 −0.177571
\(682\) 0 0
\(683\) −9735.21 −0.545399 −0.272699 0.962099i \(-0.587916\pi\)
−0.272699 + 0.962099i \(0.587916\pi\)
\(684\) 0 0
\(685\) −4967.46 −0.277076
\(686\) 0 0
\(687\) −13835.3 −0.768342
\(688\) 0 0
\(689\) 12032.9 0.665335
\(690\) 0 0
\(691\) −10894.4 −0.599774 −0.299887 0.953975i \(-0.596949\pi\)
−0.299887 + 0.953975i \(0.596949\pi\)
\(692\) 0 0
\(693\) 1710.18 0.0937438
\(694\) 0 0
\(695\) 159.278 0.00869320
\(696\) 0 0
\(697\) 43496.2 2.36375
\(698\) 0 0
\(699\) −14929.9 −0.807869
\(700\) 0 0
\(701\) −22249.4 −1.19878 −0.599392 0.800456i \(-0.704591\pi\)
−0.599392 + 0.800456i \(0.704591\pi\)
\(702\) 0 0
\(703\) 13863.8 0.743790
\(704\) 0 0
\(705\) −62.4190 −0.00333452
\(706\) 0 0
\(707\) −4025.84 −0.214155
\(708\) 0 0
\(709\) −18986.7 −1.00573 −0.502863 0.864366i \(-0.667720\pi\)
−0.502863 + 0.864366i \(0.667720\pi\)
\(710\) 0 0
\(711\) 3465.12 0.182774
\(712\) 0 0
\(713\) −31177.2 −1.63758
\(714\) 0 0
\(715\) 542.761 0.0283890
\(716\) 0 0
\(717\) 15213.1 0.792392
\(718\) 0 0
\(719\) −23210.6 −1.20391 −0.601953 0.798532i \(-0.705611\pi\)
−0.601953 + 0.798532i \(0.705611\pi\)
\(720\) 0 0
\(721\) 148.981 0.00769534
\(722\) 0 0
\(723\) −354.532 −0.0182368
\(724\) 0 0
\(725\) 17870.1 0.915417
\(726\) 0 0
\(727\) 36607.6 1.86754 0.933769 0.357875i \(-0.116499\pi\)
0.933769 + 0.357875i \(0.116499\pi\)
\(728\) 0 0
\(729\) −1719.60 −0.0873649
\(730\) 0 0
\(731\) 2309.40 0.116848
\(732\) 0 0
\(733\) −36919.3 −1.86036 −0.930182 0.367100i \(-0.880351\pi\)
−0.930182 + 0.367100i \(0.880351\pi\)
\(734\) 0 0
\(735\) 251.255 0.0126091
\(736\) 0 0
\(737\) −8057.39 −0.402711
\(738\) 0 0
\(739\) −33782.6 −1.68161 −0.840806 0.541336i \(-0.817919\pi\)
−0.840806 + 0.541336i \(0.817919\pi\)
\(740\) 0 0
\(741\) 5959.77 0.295462
\(742\) 0 0
\(743\) −12495.2 −0.616964 −0.308482 0.951230i \(-0.599821\pi\)
−0.308482 + 0.951230i \(0.599821\pi\)
\(744\) 0 0
\(745\) 163.182 0.00802485
\(746\) 0 0
\(747\) 21323.4 1.04442
\(748\) 0 0
\(749\) −12170.4 −0.593719
\(750\) 0 0
\(751\) 29369.7 1.42705 0.713526 0.700629i \(-0.247097\pi\)
0.713526 + 0.700629i \(0.247097\pi\)
\(752\) 0 0
\(753\) 9908.92 0.479550
\(754\) 0 0
\(755\) −3651.75 −0.176028
\(756\) 0 0
\(757\) −21027.1 −1.00957 −0.504784 0.863246i \(-0.668428\pi\)
−0.504784 + 0.863246i \(0.668428\pi\)
\(758\) 0 0
\(759\) −2635.61 −0.126043
\(760\) 0 0
\(761\) 9511.24 0.453065 0.226532 0.974004i \(-0.427261\pi\)
0.226532 + 0.974004i \(0.427261\pi\)
\(762\) 0 0
\(763\) 12112.8 0.574723
\(764\) 0 0
\(765\) −4478.75 −0.211673
\(766\) 0 0
\(767\) 1117.31 0.0525996
\(768\) 0 0
\(769\) 17789.8 0.834223 0.417111 0.908855i \(-0.363043\pi\)
0.417111 + 0.908855i \(0.363043\pi\)
\(770\) 0 0
\(771\) 15563.6 0.726990
\(772\) 0 0
\(773\) 21162.6 0.984690 0.492345 0.870400i \(-0.336140\pi\)
0.492345 + 0.870400i \(0.336140\pi\)
\(774\) 0 0
\(775\) 34034.2 1.57748
\(776\) 0 0
\(777\) −1642.60 −0.0758403
\(778\) 0 0
\(779\) −65345.2 −3.00544
\(780\) 0 0
\(781\) −3721.45 −0.170505
\(782\) 0 0
\(783\) 16104.0 0.735007
\(784\) 0 0
\(785\) −2069.25 −0.0940826
\(786\) 0 0
\(787\) −13182.0 −0.597062 −0.298531 0.954400i \(-0.596497\pi\)
−0.298531 + 0.954400i \(0.596497\pi\)
\(788\) 0 0
\(789\) 13577.5 0.612639
\(790\) 0 0
\(791\) −10680.0 −0.480071
\(792\) 0 0
\(793\) 9887.87 0.442785
\(794\) 0 0
\(795\) −2929.74 −0.130701
\(796\) 0 0
\(797\) 5657.68 0.251450 0.125725 0.992065i \(-0.459874\pi\)
0.125725 + 0.992065i \(0.459874\pi\)
\(798\) 0 0
\(799\) −1047.72 −0.0463902
\(800\) 0 0
\(801\) 10353.9 0.456725
\(802\) 0 0
\(803\) 12563.1 0.552109
\(804\) 0 0
\(805\) 1795.49 0.0786122
\(806\) 0 0
\(807\) 1441.96 0.0628987
\(808\) 0 0
\(809\) 20138.9 0.875212 0.437606 0.899167i \(-0.355826\pi\)
0.437606 + 0.899167i \(0.355826\pi\)
\(810\) 0 0
\(811\) 32209.2 1.39460 0.697298 0.716782i \(-0.254386\pi\)
0.697298 + 0.716782i \(0.254386\pi\)
\(812\) 0 0
\(813\) −3962.76 −0.170947
\(814\) 0 0
\(815\) 6851.55 0.294478
\(816\) 0 0
\(817\) −3469.46 −0.148569
\(818\) 0 0
\(819\) 3274.22 0.139695
\(820\) 0 0
\(821\) −17618.4 −0.748947 −0.374473 0.927238i \(-0.622177\pi\)
−0.374473 + 0.927238i \(0.622177\pi\)
\(822\) 0 0
\(823\) −29098.2 −1.23244 −0.616222 0.787573i \(-0.711337\pi\)
−0.616222 + 0.787573i \(0.711337\pi\)
\(824\) 0 0
\(825\) 2877.13 0.121417
\(826\) 0 0
\(827\) 24917.8 1.04773 0.523866 0.851800i \(-0.324489\pi\)
0.523866 + 0.851800i \(0.324489\pi\)
\(828\) 0 0
\(829\) 31331.9 1.31267 0.656335 0.754470i \(-0.272106\pi\)
0.656335 + 0.754470i \(0.272106\pi\)
\(830\) 0 0
\(831\) 15929.5 0.664969
\(832\) 0 0
\(833\) 4217.39 0.175419
\(834\) 0 0
\(835\) 6158.01 0.255218
\(836\) 0 0
\(837\) 30670.7 1.26659
\(838\) 0 0
\(839\) −27675.8 −1.13883 −0.569413 0.822051i \(-0.692830\pi\)
−0.569413 + 0.822051i \(0.692830\pi\)
\(840\) 0 0
\(841\) −2030.74 −0.0832647
\(842\) 0 0
\(843\) −7226.55 −0.295250
\(844\) 0 0
\(845\) −4108.26 −0.167252
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) 0 0
\(849\) 5040.84 0.203771
\(850\) 0 0
\(851\) −11738.2 −0.472832
\(852\) 0 0
\(853\) 31985.7 1.28390 0.641952 0.766745i \(-0.278125\pi\)
0.641952 + 0.766745i \(0.278125\pi\)
\(854\) 0 0
\(855\) 6728.52 0.269135
\(856\) 0 0
\(857\) −10590.3 −0.422119 −0.211060 0.977473i \(-0.567691\pi\)
−0.211060 + 0.977473i \(0.567691\pi\)
\(858\) 0 0
\(859\) 5241.49 0.208192 0.104096 0.994567i \(-0.466805\pi\)
0.104096 + 0.994567i \(0.466805\pi\)
\(860\) 0 0
\(861\) 7742.15 0.306448
\(862\) 0 0
\(863\) −2295.89 −0.0905596 −0.0452798 0.998974i \(-0.514418\pi\)
−0.0452798 + 0.998974i \(0.514418\pi\)
\(864\) 0 0
\(865\) −9843.44 −0.386921
\(866\) 0 0
\(867\) 5460.27 0.213888
\(868\) 0 0
\(869\) 1716.17 0.0669931
\(870\) 0 0
\(871\) −15426.2 −0.600113
\(872\) 0 0
\(873\) 2800.64 0.108576
\(874\) 0 0
\(875\) −4010.08 −0.154932
\(876\) 0 0
\(877\) −34939.0 −1.34528 −0.672638 0.739972i \(-0.734839\pi\)
−0.672638 + 0.739972i \(0.734839\pi\)
\(878\) 0 0
\(879\) 16671.3 0.639716
\(880\) 0 0
\(881\) 31320.9 1.19776 0.598880 0.800839i \(-0.295613\pi\)
0.598880 + 0.800839i \(0.295613\pi\)
\(882\) 0 0
\(883\) 12551.8 0.478372 0.239186 0.970974i \(-0.423119\pi\)
0.239186 + 0.970974i \(0.423119\pi\)
\(884\) 0 0
\(885\) −272.041 −0.0103328
\(886\) 0 0
\(887\) −9061.43 −0.343014 −0.171507 0.985183i \(-0.554864\pi\)
−0.171507 + 0.985183i \(0.554864\pi\)
\(888\) 0 0
\(889\) 521.238 0.0196645
\(890\) 0 0
\(891\) −4003.62 −0.150535
\(892\) 0 0
\(893\) 1574.02 0.0589837
\(894\) 0 0
\(895\) −3915.16 −0.146223
\(896\) 0 0
\(897\) −5046.00 −0.187827
\(898\) 0 0
\(899\) 42582.2 1.57975
\(900\) 0 0
\(901\) −49176.6 −1.81832
\(902\) 0 0
\(903\) 411.064 0.0151488
\(904\) 0 0
\(905\) 5548.36 0.203794
\(906\) 0 0
\(907\) 7541.25 0.276079 0.138039 0.990427i \(-0.455920\pi\)
0.138039 + 0.990427i \(0.455920\pi\)
\(908\) 0 0
\(909\) 12773.5 0.466085
\(910\) 0 0
\(911\) 49191.8 1.78902 0.894511 0.447047i \(-0.147524\pi\)
0.894511 + 0.447047i \(0.147524\pi\)
\(912\) 0 0
\(913\) 10560.8 0.382817
\(914\) 0 0
\(915\) −2407.48 −0.0869822
\(916\) 0 0
\(917\) 16553.8 0.596133
\(918\) 0 0
\(919\) 42169.9 1.51366 0.756831 0.653610i \(-0.226746\pi\)
0.756831 + 0.653610i \(0.226746\pi\)
\(920\) 0 0
\(921\) −15472.1 −0.553553
\(922\) 0 0
\(923\) −7124.89 −0.254083
\(924\) 0 0
\(925\) 12813.9 0.455478
\(926\) 0 0
\(927\) −472.699 −0.0167481
\(928\) 0 0
\(929\) −56429.2 −1.99288 −0.996438 0.0843275i \(-0.973126\pi\)
−0.996438 + 0.0843275i \(0.973126\pi\)
\(930\) 0 0
\(931\) −6335.87 −0.223040
\(932\) 0 0
\(933\) −6972.57 −0.244664
\(934\) 0 0
\(935\) −2218.19 −0.0775855
\(936\) 0 0
\(937\) −31947.1 −1.11384 −0.556919 0.830567i \(-0.688017\pi\)
−0.556919 + 0.830567i \(0.688017\pi\)
\(938\) 0 0
\(939\) 9840.09 0.341980
\(940\) 0 0
\(941\) −27012.6 −0.935799 −0.467900 0.883782i \(-0.654989\pi\)
−0.467900 + 0.883782i \(0.654989\pi\)
\(942\) 0 0
\(943\) 55326.3 1.91057
\(944\) 0 0
\(945\) −1766.33 −0.0608027
\(946\) 0 0
\(947\) −25388.4 −0.871184 −0.435592 0.900144i \(-0.643461\pi\)
−0.435592 + 0.900144i \(0.643461\pi\)
\(948\) 0 0
\(949\) 24052.7 0.822744
\(950\) 0 0
\(951\) 13974.7 0.476508
\(952\) 0 0
\(953\) 39733.5 1.35057 0.675285 0.737557i \(-0.264021\pi\)
0.675285 + 0.737557i \(0.264021\pi\)
\(954\) 0 0
\(955\) 9908.36 0.335735
\(956\) 0 0
\(957\) 3599.75 0.121592
\(958\) 0 0
\(959\) −14841.4 −0.499743
\(960\) 0 0
\(961\) 51308.5 1.72228
\(962\) 0 0
\(963\) 38615.1 1.29217
\(964\) 0 0
\(965\) 6407.80 0.213756
\(966\) 0 0
\(967\) −4200.60 −0.139692 −0.0698460 0.997558i \(-0.522251\pi\)
−0.0698460 + 0.997558i \(0.522251\pi\)
\(968\) 0 0
\(969\) −24356.7 −0.807482
\(970\) 0 0
\(971\) −36383.1 −1.20246 −0.601231 0.799075i \(-0.705323\pi\)
−0.601231 + 0.799075i \(0.705323\pi\)
\(972\) 0 0
\(973\) 475.880 0.0156794
\(974\) 0 0
\(975\) 5508.40 0.180933
\(976\) 0 0
\(977\) 5474.38 0.179264 0.0896319 0.995975i \(-0.471431\pi\)
0.0896319 + 0.995975i \(0.471431\pi\)
\(978\) 0 0
\(979\) 5127.96 0.167406
\(980\) 0 0
\(981\) −38432.5 −1.25082
\(982\) 0 0
\(983\) −20660.9 −0.670376 −0.335188 0.942151i \(-0.608800\pi\)
−0.335188 + 0.942151i \(0.608800\pi\)
\(984\) 0 0
\(985\) 657.704 0.0212753
\(986\) 0 0
\(987\) −186.491 −0.00601425
\(988\) 0 0
\(989\) 2937.51 0.0944462
\(990\) 0 0
\(991\) 36458.2 1.16865 0.584325 0.811520i \(-0.301359\pi\)
0.584325 + 0.811520i \(0.301359\pi\)
\(992\) 0 0
\(993\) −9232.31 −0.295044
\(994\) 0 0
\(995\) 3478.30 0.110824
\(996\) 0 0
\(997\) 34040.5 1.08132 0.540658 0.841242i \(-0.318175\pi\)
0.540658 + 0.841242i \(0.318175\pi\)
\(998\) 0 0
\(999\) 11547.5 0.365713
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 616.4.a.h.1.4 6
4.3 odd 2 1232.4.a.ba.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.4.a.h.1.4 6 1.1 even 1 trivial
1232.4.a.ba.1.3 6 4.3 odd 2