Properties

Label 2-616-1.1-c3-0-2
Degree $2$
Conductor $616$
Sign $1$
Analytic cond. $36.3451$
Root an. cond. $6.02869$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.46·3-s − 3.00·5-s − 7·7-s + 14.7·9-s − 11·11-s − 29.1·13-s + 19.4·15-s + 31.7·17-s − 81.9·19-s + 45.2·21-s − 163.·23-s − 115.·25-s + 79.0·27-s − 93.6·29-s − 55.7·31-s + 71.0·33-s + 21.0·35-s + 344.·37-s + 188.·39-s + 36.0·41-s − 175.·43-s − 44.3·45-s − 364.·47-s + 49·49-s − 205.·51-s + 71.2·53-s + 33.0·55-s + ⋯
L(s)  = 1  − 1.24·3-s − 0.268·5-s − 0.377·7-s + 0.546·9-s − 0.301·11-s − 0.621·13-s + 0.334·15-s + 0.453·17-s − 0.988·19-s + 0.470·21-s − 1.48·23-s − 0.927·25-s + 0.563·27-s − 0.599·29-s − 0.322·31-s + 0.374·33-s + 0.101·35-s + 1.53·37-s + 0.773·39-s + 0.137·41-s − 0.622·43-s − 0.146·45-s − 1.13·47-s + 0.142·49-s − 0.564·51-s + 0.184·53-s + 0.0810·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(616\)    =    \(2^{3} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(36.3451\)
Root analytic conductor: \(6.02869\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 616,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5030388364\)
\(L(\frac12)\) \(\approx\) \(0.5030388364\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 + 11T \)
good3 \( 1 + 6.46T + 27T^{2} \)
5 \( 1 + 3.00T + 125T^{2} \)
13 \( 1 + 29.1T + 2.19e3T^{2} \)
17 \( 1 - 31.7T + 4.91e3T^{2} \)
19 \( 1 + 81.9T + 6.85e3T^{2} \)
23 \( 1 + 163.T + 1.21e4T^{2} \)
29 \( 1 + 93.6T + 2.43e4T^{2} \)
31 \( 1 + 55.7T + 2.97e4T^{2} \)
37 \( 1 - 344.T + 5.06e4T^{2} \)
41 \( 1 - 36.0T + 6.89e4T^{2} \)
43 \( 1 + 175.T + 7.95e4T^{2} \)
47 \( 1 + 364.T + 1.03e5T^{2} \)
53 \( 1 - 71.2T + 1.48e5T^{2} \)
59 \( 1 - 454.T + 2.05e5T^{2} \)
61 \( 1 - 347.T + 2.26e5T^{2} \)
67 \( 1 - 381.T + 3.00e5T^{2} \)
71 \( 1 + 605.T + 3.57e5T^{2} \)
73 \( 1 - 664.T + 3.89e5T^{2} \)
79 \( 1 - 70.8T + 4.93e5T^{2} \)
83 \( 1 - 375.T + 5.71e5T^{2} \)
89 \( 1 - 1.32e3T + 7.04e5T^{2} \)
97 \( 1 + 808.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24456048895978241834145162686, −9.686061423008184340908037654633, −8.340971355084247973682191981906, −7.49218565482856623943246694395, −6.39190131572731178795871625003, −5.77968830155796660041921987094, −4.78868412263933812378928304156, −3.73524586636528176218300335826, −2.18373343349134501432629898457, −0.42574170301776120103939541110, 0.42574170301776120103939541110, 2.18373343349134501432629898457, 3.73524586636528176218300335826, 4.78868412263933812378928304156, 5.77968830155796660041921987094, 6.39190131572731178795871625003, 7.49218565482856623943246694395, 8.340971355084247973682191981906, 9.686061423008184340908037654633, 10.24456048895978241834145162686

Graph of the $Z$-function along the critical line