L(s) = 1 | − 6.46·3-s − 3.00·5-s − 7·7-s + 14.7·9-s − 11·11-s − 29.1·13-s + 19.4·15-s + 31.7·17-s − 81.9·19-s + 45.2·21-s − 163.·23-s − 115.·25-s + 79.0·27-s − 93.6·29-s − 55.7·31-s + 71.0·33-s + 21.0·35-s + 344.·37-s + 188.·39-s + 36.0·41-s − 175.·43-s − 44.3·45-s − 364.·47-s + 49·49-s − 205.·51-s + 71.2·53-s + 33.0·55-s + ⋯ |
L(s) = 1 | − 1.24·3-s − 0.268·5-s − 0.377·7-s + 0.546·9-s − 0.301·11-s − 0.621·13-s + 0.334·15-s + 0.453·17-s − 0.988·19-s + 0.470·21-s − 1.48·23-s − 0.927·25-s + 0.563·27-s − 0.599·29-s − 0.322·31-s + 0.374·33-s + 0.101·35-s + 1.53·37-s + 0.773·39-s + 0.137·41-s − 0.622·43-s − 0.146·45-s − 1.13·47-s + 0.142·49-s − 0.564·51-s + 0.184·53-s + 0.0810·55-s + ⋯ |
Λ(s)=(=(616s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(616s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.5030388364 |
L(21) |
≈ |
0.5030388364 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+7T |
| 11 | 1+11T |
good | 3 | 1+6.46T+27T2 |
| 5 | 1+3.00T+125T2 |
| 13 | 1+29.1T+2.19e3T2 |
| 17 | 1−31.7T+4.91e3T2 |
| 19 | 1+81.9T+6.85e3T2 |
| 23 | 1+163.T+1.21e4T2 |
| 29 | 1+93.6T+2.43e4T2 |
| 31 | 1+55.7T+2.97e4T2 |
| 37 | 1−344.T+5.06e4T2 |
| 41 | 1−36.0T+6.89e4T2 |
| 43 | 1+175.T+7.95e4T2 |
| 47 | 1+364.T+1.03e5T2 |
| 53 | 1−71.2T+1.48e5T2 |
| 59 | 1−454.T+2.05e5T2 |
| 61 | 1−347.T+2.26e5T2 |
| 67 | 1−381.T+3.00e5T2 |
| 71 | 1+605.T+3.57e5T2 |
| 73 | 1−664.T+3.89e5T2 |
| 79 | 1−70.8T+4.93e5T2 |
| 83 | 1−375.T+5.71e5T2 |
| 89 | 1−1.32e3T+7.04e5T2 |
| 97 | 1+808.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.24456048895978241834145162686, −9.686061423008184340908037654633, −8.340971355084247973682191981906, −7.49218565482856623943246694395, −6.39190131572731178795871625003, −5.77968830155796660041921987094, −4.78868412263933812378928304156, −3.73524586636528176218300335826, −2.18373343349134501432629898457, −0.42574170301776120103939541110,
0.42574170301776120103939541110, 2.18373343349134501432629898457, 3.73524586636528176218300335826, 4.78868412263933812378928304156, 5.77968830155796660041921987094, 6.39190131572731178795871625003, 7.49218565482856623943246694395, 8.340971355084247973682191981906, 9.686061423008184340908037654633, 10.24456048895978241834145162686