[N,k,chi] = [616,4,Mod(1,616)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(616, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("616.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
7 7 7
+ 1 +1 + 1
11 11 1 1
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 616 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(616)) S 4 n e w ( Γ 0 ( 6 1 6 ) ) :
T 3 7 − 145 T 3 5 + 10 T 3 4 + 4790 T 3 3 + 2452 T 3 2 − 1496 T 3 − 320 T_{3}^{7} - 145T_{3}^{5} + 10T_{3}^{4} + 4790T_{3}^{3} + 2452T_{3}^{2} - 1496T_{3} - 320 T 3 7 − 1 4 5 T 3 5 + 1 0 T 3 4 + 4 7 9 0 T 3 3 + 2 4 5 2 T 3 2 − 1 4 9 6 T 3 − 3 2 0
T3^7 - 145*T3^5 + 10*T3^4 + 4790*T3^3 + 2452*T3^2 - 1496*T3 - 320
T 5 7 − 6 T 5 6 − 591 T 5 5 + 2228 T 5 4 + 107076 T 5 3 − 111752 T 5 2 − 6037280 T 5 − 14549536 T_{5}^{7} - 6T_{5}^{6} - 591T_{5}^{5} + 2228T_{5}^{4} + 107076T_{5}^{3} - 111752T_{5}^{2} - 6037280T_{5} - 14549536 T 5 7 − 6 T 5 6 − 5 9 1 T 5 5 + 2 2 2 8 T 5 4 + 1 0 7 0 7 6 T 5 3 − 1 1 1 7 5 2 T 5 2 − 6 0 3 7 2 8 0 T 5 − 1 4 5 4 9 5 3 6
T5^7 - 6*T5^6 - 591*T5^5 + 2228*T5^4 + 107076*T5^3 - 111752*T5^2 - 6037280*T5 - 14549536
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 7 T^{7} T 7
T^7
3 3 3
T 7 − 145 T 5 + ⋯ − 320 T^{7} - 145 T^{5} + \cdots - 320 T 7 − 1 4 5 T 5 + ⋯ − 3 2 0
T^7 - 145*T^5 + 10*T^4 + 4790*T^3 + 2452*T^2 - 1496*T - 320
5 5 5
T 7 − 6 T 6 + ⋯ − 14549536 T^{7} - 6 T^{6} + \cdots - 14549536 T 7 − 6 T 6 + ⋯ − 1 4 5 4 9 5 3 6
T^7 - 6*T^6 - 591*T^5 + 2228*T^4 + 107076*T^3 - 111752*T^2 - 6037280*T - 14549536
7 7 7
( T + 7 ) 7 (T + 7)^{7} ( T + 7 ) 7
(T + 7)^7
11 11 1 1
( T + 11 ) 7 (T + 11)^{7} ( T + 1 1 ) 7
(T + 11)^7
13 13 1 3
T 7 + ⋯ − 79161659136 T^{7} + \cdots - 79161659136 T 7 + ⋯ − 7 9 1 6 1 6 5 9 1 3 6
T^7 - 88*T^6 - 5570*T^5 + 444528*T^4 + 13868800*T^3 - 542018992*T^2 - 17733243584*T - 79161659136
17 17 1 7
T 7 + ⋯ + 151755555840 T^{7} + \cdots + 151755555840 T 7 + ⋯ + 1 5 1 7 5 5 5 5 5 8 4 0
T^7 - 134*T^6 - 7086*T^5 + 1464204*T^4 - 42464920*T^3 - 561585936*T^2 + 19509561728*T + 151755555840
19 19 1 9
T 7 + ⋯ − 15743217343488 T^{7} + \cdots - 15743217343488 T 7 + ⋯ − 1 5 7 4 3 2 1 7 3 4 3 4 8 8
T^7 - 14*T^6 - 32568*T^5 + 206040*T^4 + 350777040*T^3 + 864346304*T^2 - 1249215222656*T - 15743217343488
23 23 2 3
T 7 + ⋯ + 120191659904000 T^{7} + \cdots + 120191659904000 T 7 + ⋯ + 1 2 0 1 9 1 6 5 9 9 0 4 0 0 0
T^7 - 42*T^6 - 57327*T^5 + 3567936*T^4 + 867532456*T^3 - 70009628864*T^2 - 1338816653696*T + 120191659904000
29 29 2 9
T 7 + ⋯ + 2542483952512 T^{7} + \cdots + 2542483952512 T 7 + ⋯ + 2 5 4 2 4 8 3 9 5 2 5 1 2
T^7 - 482*T^6 + 57900*T^5 + 1297992*T^4 - 513498512*T^3 + 26714905632*T^2 - 491881428160*T + 2542483952512
31 31 3 1
T 7 + ⋯ − 5980457097664 T^{7} + \cdots - 5980457097664 T 7 + ⋯ − 5 9 8 0 4 5 7 0 9 7 6 6 4
T^7 - 50*T^6 - 43501*T^5 - 2969420*T^4 + 90935286*T^3 + 11551803088*T^2 + 102847772728*T - 5980457097664
37 37 3 7
T 7 + ⋯ − 16 ⋯ 72 T^{7} + \cdots - 16\!\cdots\!72 T 7 + ⋯ − 1 6 ⋯ 7 2
T^7 - 152*T^6 - 305927*T^5 + 49565910*T^4 + 24514937292*T^3 - 3954644636984*T^2 - 193615516281984*T - 1671990562943872
41 41 4 1
T 7 + ⋯ − 45 ⋯ 36 T^{7} + \cdots - 45\!\cdots\!36 T 7 + ⋯ − 4 5 ⋯ 3 6
T^7 - 234*T^6 - 238046*T^5 + 63952724*T^4 + 8307303464*T^3 - 3280282392624*T^2 + 230138923065344*T - 4515770199643136
43 43 4 3
T 7 + ⋯ + 32 ⋯ 28 T^{7} + \cdots + 32\!\cdots\!28 T 7 + ⋯ + 3 2 ⋯ 2 8
T^7 - 472*T^6 - 257300*T^5 + 84090640*T^4 + 24246280768*T^3 - 2720634231040*T^2 - 447023582428160*T + 32755184065302528
47 47 4 7
T 7 + ⋯ + 62 ⋯ 68 T^{7} + \cdots + 62\!\cdots\!68 T 7 + ⋯ + 6 2 ⋯ 6 8
T^7 - 728*T^6 - 195754*T^5 + 173861360*T^4 + 12356516440*T^3 - 10699476046848*T^2 - 524106396564480*T + 62191475628576768
53 53 5 3
T 7 + ⋯ + 47 ⋯ 96 T^{7} + \cdots + 47\!\cdots\!96 T 7 + ⋯ + 4 7 ⋯ 9 6
T^7 + 102*T^6 - 679992*T^5 - 32174800*T^4 + 106916628304*T^3 + 1798891594208*T^2 - 1305099795925504*T + 47251926943312896
59 59 5 9
T 7 + ⋯ − 11 ⋯ 76 T^{7} + \cdots - 11\!\cdots\!76 T 7 + ⋯ − 1 1 ⋯ 7 6
T^7 - 1704*T^6 + 424495*T^5 + 731489894*T^4 - 447265780354*T^3 - 14659981345524*T^2 + 61831625079816344*T - 11514526043687706176
61 61 6 1
T 7 + ⋯ + 49 ⋯ 96 T^{7} + \cdots + 49\!\cdots\!96 T 7 + ⋯ + 4 9 ⋯ 9 6
T^7 - 656*T^6 - 405366*T^5 + 313819168*T^4 - 19461087448*T^3 - 10924222065168*T^2 + 436042040186880*T + 4950023731442496
67 67 6 7
T 7 + ⋯ + 55 ⋯ 44 T^{7} + \cdots + 55\!\cdots\!44 T 7 + ⋯ + 5 5 ⋯ 4 4
T^7 - 1126*T^6 - 118599*T^5 + 474218504*T^4 - 103317315160*T^3 - 26330793140480*T^2 + 5828366912756736*T + 553875655986118144
71 71 7 1
T 7 + ⋯ + 10 ⋯ 44 T^{7} + \cdots + 10\!\cdots\!44 T 7 + ⋯ + 1 0 ⋯ 4 4
T^7 + 918*T^6 - 1095151*T^5 - 844184908*T^4 + 294726454424*T^3 + 151877544171936*T^2 - 29094938807414400*T + 1069588722849030144
73 73 7 3
T 7 + ⋯ − 90 ⋯ 40 T^{7} + \cdots - 90\!\cdots\!40 T 7 + ⋯ − 9 0 ⋯ 4 0
T^7 - 1094*T^6 - 1766614*T^5 + 2582868236*T^4 + 103860090776*T^3 - 1397318402776016*T^2 + 660825578565820992*T - 90325735881766352640
79 79 7 9
T 7 + ⋯ − 26 ⋯ 88 T^{7} + \cdots - 26\!\cdots\!88 T 7 + ⋯ − 2 6 ⋯ 8 8
T^7 - 672*T^6 - 1459984*T^5 + 982050048*T^4 + 373709766384*T^3 - 341342459482496*T^2 + 59837408496401408*T - 2680203356037644288
83 83 8 3
T 7 + ⋯ + 17 ⋯ 60 T^{7} + \cdots + 17\!\cdots\!60 T 7 + ⋯ + 1 7 ⋯ 6 0
T^7 - 782*T^6 - 1028748*T^5 + 1047555904*T^4 - 105538519584*T^3 - 95719017376640*T^2 + 18370436523516416*T + 178328409421148160
89 89 8 9
T 7 + ⋯ + 93 ⋯ 64 T^{7} + \cdots + 93\!\cdots\!64 T 7 + ⋯ + 9 3 ⋯ 6 4
T^7 + 464*T^6 - 2760631*T^5 - 1118220178*T^4 + 1818630900168*T^3 + 606485948970768*T^2 - 191100206519810032*T + 9335355776969482464
97 97 9 7
T 7 + ⋯ − 18 ⋯ 96 T^{7} + \cdots - 18\!\cdots\!96 T 7 + ⋯ − 1 8 ⋯ 9 6
T^7 - 3000*T^6 - 318799*T^5 + 7080114586*T^4 - 3584631472784*T^3 - 3148509436732448*T^2 + 2135876209171660144*T - 184305413897395723296
show more
show less