Properties

Label 616.4.a.j
Level 616616
Weight 44
Character orbit 616.a
Self dual yes
Analytic conductor 36.34536.345
Analytic rank 00
Dimension 77
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [616,4,Mod(1,616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("616.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 616=23711 616 = 2^{3} \cdot 7 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 36.345176563536.3451765635
Analytic rank: 00
Dimension: 77
Coefficient field: Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x7145x510x4+4790x32452x21496x+320 x^{7} - 145x^{5} - 10x^{4} + 4790x^{3} - 2452x^{2} - 1496x + 320 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 26 2^{6}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β61,\beta_1,\ldots,\beta_{6} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3+(β2+1)q57q7+(β3β2+15)q911q11+(β62β2++13)q13+(β5β3β2+15)q15++(11β3+11β2165)q99+O(q100) q - \beta_1 q^{3} + ( - \beta_{2} + 1) q^{5} - 7 q^{7} + (\beta_{3} - \beta_{2} + 15) q^{9} - 11 q^{11} + ( - \beta_{6} - 2 \beta_{2} + \cdots + 13) q^{13} + (\beta_{5} - \beta_{3} - \beta_{2} + \cdots - 15) q^{15}+ \cdots + ( - 11 \beta_{3} + 11 \beta_{2} - 165) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 7q+6q549q7+101q977q11+88q13106q15+134q17+14q19+42q23+343q2530q27+482q29+50q3142q35+152q37+72q39+234q41+1111q99+O(q100) 7 q + 6 q^{5} - 49 q^{7} + 101 q^{9} - 77 q^{11} + 88 q^{13} - 106 q^{15} + 134 q^{17} + 14 q^{19} + 42 q^{23} + 343 q^{25} - 30 q^{27} + 482 q^{29} + 50 q^{31} - 42 q^{35} + 152 q^{37} + 72 q^{39} + 234 q^{41}+ \cdots - 1111 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x7145x510x4+4790x32452x21496x+320 x^{7} - 145x^{5} - 10x^{4} + 4790x^{3} - 2452x^{2} - 1496x + 320 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (41ν6+14ν55961ν42300ν3+196706ν244544ν43900)/2556 ( 41\nu^{6} + 14\nu^{5} - 5961\nu^{4} - 2300\nu^{3} + 196706\nu^{2} - 44544\nu - 43900 ) / 2556 Copy content Toggle raw display
β3\beta_{3}== (41ν6+14ν55961ν42300ν3+199262ν244544ν151252)/2556 ( 41\nu^{6} + 14\nu^{5} - 5961\nu^{4} - 2300\nu^{3} + 199262\nu^{2} - 44544\nu - 151252 ) / 2556 Copy content Toggle raw display
β4\beta_{4}== (59ν634ν5+8391ν4+6032ν3266094ν249036ν+236)/2556 ( -59\nu^{6} - 34\nu^{5} + 8391\nu^{4} + 6032\nu^{3} - 266094\nu^{2} - 49036\nu + 236 ) / 2556 Copy content Toggle raw display
β5\beta_{5}== (8ν6+ν51151ν4357ν3+37663ν24906ν14161)/213 ( 8\nu^{6} + \nu^{5} - 1151\nu^{4} - 357\nu^{3} + 37663\nu^{2} - 4906\nu - 14161 ) / 213 Copy content Toggle raw display
β6\beta_{6}== (23ν6+6ν5+3318ν4580ν3109000ν2+81040ν+23451)/639 ( -23\nu^{6} + 6\nu^{5} + 3318\nu^{4} - 580\nu^{3} - 109000\nu^{2} + 81040\nu + 23451 ) / 639 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3β2+42 \beta_{3} - \beta_{2} + 42 Copy content Toggle raw display
ν3\nu^{3}== β62β5β4+2β3β2+79β1+5 -\beta_{6} - 2\beta_{5} - \beta_{4} + 2\beta_{3} - \beta_{2} + 79\beta _1 + 5 Copy content Toggle raw display
ν4\nu^{4}== 7β68β516β4+94β3114β2+48β1+3331 -7\beta_{6} - 8\beta_{5} - 16\beta_{4} + 94\beta_{3} - 114\beta_{2} + 48\beta _1 + 3331 Copy content Toggle raw display
ν5\nu^{5}== 102β6285β5165β4+349β3148β2+6709β1+2921 -102\beta_{6} - 285\beta_{5} - 165\beta_{4} + 349\beta_{3} - 148\beta_{2} + 6709\beta _1 + 2921 Copy content Toggle raw display
ν6\nu^{6}== 1039β61178β52326β4+8862β311720β2+10206β1+283145 -1039\beta_{6} - 1178\beta_{5} - 2326\beta_{4} + 8862\beta_{3} - 11720\beta_{2} + 10206\beta _1 + 283145 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
10.0610
6.46220
0.812616
0.179568
−0.466684
−7.90093
−9.14775
0 −10.0610 0 14.3419 0 −7.00000 0 74.2235 0
1.2 0 −6.46220 0 −3.00579 0 −7.00000 0 14.7600 0
1.3 0 −0.812616 0 −16.9890 0 −7.00000 0 −26.3397 0
1.4 0 −0.179568 0 18.8308 0 −7.00000 0 −26.9678 0
1.5 0 0.466684 0 −6.69970 0 −7.00000 0 −26.7822 0
1.6 0 7.90093 0 −12.7900 0 −7.00000 0 35.4247 0
1.7 0 9.14775 0 12.3118 0 −7.00000 0 56.6814 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
77 +1 +1
1111 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 616.4.a.j 7
4.b odd 2 1 1232.4.a.bd 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
616.4.a.j 7 1.a even 1 1 trivial
1232.4.a.bd 7 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(616))S_{4}^{\mathrm{new}}(\Gamma_0(616)):

T37145T35+10T34+4790T33+2452T321496T3320 T_{3}^{7} - 145T_{3}^{5} + 10T_{3}^{4} + 4790T_{3}^{3} + 2452T_{3}^{2} - 1496T_{3} - 320 Copy content Toggle raw display
T576T56591T55+2228T54+107076T53111752T526037280T514549536 T_{5}^{7} - 6T_{5}^{6} - 591T_{5}^{5} + 2228T_{5}^{4} + 107076T_{5}^{3} - 111752T_{5}^{2} - 6037280T_{5} - 14549536 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T7 T^{7} Copy content Toggle raw display
33 T7145T5+320 T^{7} - 145 T^{5} + \cdots - 320 Copy content Toggle raw display
55 T76T6+14549536 T^{7} - 6 T^{6} + \cdots - 14549536 Copy content Toggle raw display
77 (T+7)7 (T + 7)^{7} Copy content Toggle raw display
1111 (T+11)7 (T + 11)^{7} Copy content Toggle raw display
1313 T7+79161659136 T^{7} + \cdots - 79161659136 Copy content Toggle raw display
1717 T7++151755555840 T^{7} + \cdots + 151755555840 Copy content Toggle raw display
1919 T7+15743217343488 T^{7} + \cdots - 15743217343488 Copy content Toggle raw display
2323 T7++120191659904000 T^{7} + \cdots + 120191659904000 Copy content Toggle raw display
2929 T7++2542483952512 T^{7} + \cdots + 2542483952512 Copy content Toggle raw display
3131 T7+5980457097664 T^{7} + \cdots - 5980457097664 Copy content Toggle raw display
3737 T7+16 ⁣ ⁣72 T^{7} + \cdots - 16\!\cdots\!72 Copy content Toggle raw display
4141 T7+45 ⁣ ⁣36 T^{7} + \cdots - 45\!\cdots\!36 Copy content Toggle raw display
4343 T7++32 ⁣ ⁣28 T^{7} + \cdots + 32\!\cdots\!28 Copy content Toggle raw display
4747 T7++62 ⁣ ⁣68 T^{7} + \cdots + 62\!\cdots\!68 Copy content Toggle raw display
5353 T7++47 ⁣ ⁣96 T^{7} + \cdots + 47\!\cdots\!96 Copy content Toggle raw display
5959 T7+11 ⁣ ⁣76 T^{7} + \cdots - 11\!\cdots\!76 Copy content Toggle raw display
6161 T7++49 ⁣ ⁣96 T^{7} + \cdots + 49\!\cdots\!96 Copy content Toggle raw display
6767 T7++55 ⁣ ⁣44 T^{7} + \cdots + 55\!\cdots\!44 Copy content Toggle raw display
7171 T7++10 ⁣ ⁣44 T^{7} + \cdots + 10\!\cdots\!44 Copy content Toggle raw display
7373 T7+90 ⁣ ⁣40 T^{7} + \cdots - 90\!\cdots\!40 Copy content Toggle raw display
7979 T7+26 ⁣ ⁣88 T^{7} + \cdots - 26\!\cdots\!88 Copy content Toggle raw display
8383 T7++17 ⁣ ⁣60 T^{7} + \cdots + 17\!\cdots\!60 Copy content Toggle raw display
8989 T7++93 ⁣ ⁣64 T^{7} + \cdots + 93\!\cdots\!64 Copy content Toggle raw display
9797 T7+18 ⁣ ⁣96 T^{7} + \cdots - 18\!\cdots\!96 Copy content Toggle raw display
show more
show less