L(s) = 1 | + 3i·3-s + (13.7 − 13.7i)5-s + (−9.00 + 9.00i)7-s − 9·9-s + (5.13 − 5.13i)11-s + (−29.7 − 36.2i)13-s + (41.1 + 41.1i)15-s − 41.0i·17-s + (28.6 + 28.6i)19-s + (−27.0 − 27.0i)21-s + 58.8·23-s − 251. i·25-s − 27i·27-s − 13.6·29-s + (−163. − 163. i)31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (1.22 − 1.22i)5-s + (−0.486 + 0.486i)7-s − 0.333·9-s + (0.140 − 0.140i)11-s + (−0.634 − 0.772i)13-s + (0.708 + 0.708i)15-s − 0.586i·17-s + (0.345 + 0.345i)19-s + (−0.280 − 0.280i)21-s + 0.533·23-s − 2.01i·25-s − 0.192i·27-s − 0.0871·29-s + (−0.949 − 0.949i)31-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)(−0.0655+0.997i)Λ(4−s)
Λ(s)=(=(624s/2ΓC(s+3/2)L(s)(−0.0655+0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
624
= 24⋅3⋅13
|
Sign: |
−0.0655+0.997i
|
Analytic conductor: |
36.8171 |
Root analytic conductor: |
6.06771 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ624(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 624, ( :3/2), −0.0655+0.997i)
|
Particular Values
L(2) |
≈ |
1.691037334 |
L(21) |
≈ |
1.691037334 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3iT |
| 13 | 1+(29.7+36.2i)T |
good | 5 | 1+(−13.7+13.7i)T−125iT2 |
| 7 | 1+(9.00−9.00i)T−343iT2 |
| 11 | 1+(−5.13+5.13i)T−1.33e3iT2 |
| 17 | 1+41.0iT−4.91e3T2 |
| 19 | 1+(−28.6−28.6i)T+6.85e3iT2 |
| 23 | 1−58.8T+1.21e4T2 |
| 29 | 1+13.6T+2.43e4T2 |
| 31 | 1+(163.+163.i)T+2.97e4iT2 |
| 37 | 1+(129.+129.i)T+5.06e4iT2 |
| 41 | 1+(−30.4+30.4i)T−6.89e4iT2 |
| 43 | 1+342.T+7.95e4T2 |
| 47 | 1+(−328.+328.i)T−1.03e5iT2 |
| 53 | 1−109.T+1.48e5T2 |
| 59 | 1+(262.−262.i)T−2.05e5iT2 |
| 61 | 1−69.0T+2.26e5T2 |
| 67 | 1+(138.+138.i)T+3.00e5iT2 |
| 71 | 1+(185.+185.i)T+3.57e5iT2 |
| 73 | 1+(597.+597.i)T+3.89e5iT2 |
| 79 | 1+627.iT−4.93e5T2 |
| 83 | 1+(−542.−542.i)T+5.71e5iT2 |
| 89 | 1+(306.+306.i)T+7.04e5iT2 |
| 97 | 1+(−1.22e3+1.22e3i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.792640400056007369723579143549, −9.223086490333367589612988149037, −8.616461600497029111811813273266, −7.35519398465778891437753888925, −5.92096944728621968564785364345, −5.46906053493843936499865424707, −4.60657004335798388775960398231, −3.16060199660410751102279785536, −1.96147963979710766711543701854, −0.46223584914440797692589799938,
1.50378968500484842761152958879, 2.51898618449088654000371279958, 3.52914279873816417128053973270, 5.11647426442156891306982492757, 6.21858057099884688307364656625, 6.85227851393895268209196009888, 7.37941451074813998292974319321, 8.858569986799420875549055404987, 9.691786072537563676170887815592, 10.38606883862940723633403030941