Properties

Label 624.4.bc.d.31.14
Level $624$
Weight $4$
Character 624.31
Analytic conductor $36.817$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,4,Mod(31,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.31");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.bc (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 31.14
Character \(\chi\) \(=\) 624.31
Dual form 624.4.bc.d.463.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} +(13.7178 - 13.7178i) q^{5} +(-9.00439 + 9.00439i) q^{7} -9.00000 q^{9} +(5.13681 - 5.13681i) q^{11} +(-29.7474 - 36.2228i) q^{13} +(41.1534 + 41.1534i) q^{15} -41.0920i q^{17} +(28.6094 + 28.6094i) q^{19} +(-27.0132 - 27.0132i) q^{21} +58.8194 q^{23} -251.357i q^{25} -27.0000i q^{27} -13.6058 q^{29} +(-163.913 - 163.913i) q^{31} +(15.4104 + 15.4104i) q^{33} +247.041i q^{35} +(-129.152 - 129.152i) q^{37} +(108.669 - 89.2421i) q^{39} +(30.4179 - 30.4179i) q^{41} -342.340 q^{43} +(-123.460 + 123.460i) q^{45} +(328.489 - 328.489i) q^{47} +180.842i q^{49} +123.276 q^{51} +109.796 q^{53} -140.932i q^{55} +(-85.8283 + 85.8283i) q^{57} +(-262.191 + 262.191i) q^{59} +69.0168 q^{61} +(81.0396 - 81.0396i) q^{63} +(-904.967 - 88.8295i) q^{65} +(-138.791 - 138.791i) q^{67} +176.458i q^{69} +(-185.237 - 185.237i) q^{71} +(-597.825 - 597.825i) q^{73} +754.071 q^{75} +92.5078i q^{77} -627.547i q^{79} +81.0000 q^{81} +(542.734 + 542.734i) q^{83} +(-563.692 - 563.692i) q^{85} -40.8173i q^{87} +(-306.102 - 306.102i) q^{89} +(594.022 + 58.3078i) q^{91} +(491.740 - 491.740i) q^{93} +784.917 q^{95} +(1229.81 - 1229.81i) q^{97} +(-46.2313 + 46.2313i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 4 q^{5} + 8 q^{7} - 252 q^{9} - 64 q^{11} - 32 q^{13} + 12 q^{15} - 56 q^{19} + 24 q^{21} - 384 q^{23} - 32 q^{29} + 168 q^{31} - 192 q^{33} + 412 q^{37} - 252 q^{39} + 1340 q^{41} - 624 q^{43} - 36 q^{45}+ \cdots + 576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) 13.7178 13.7178i 1.22696 1.22696i 0.261850 0.965109i \(-0.415667\pi\)
0.965109 0.261850i \(-0.0843327\pi\)
\(6\) 0 0
\(7\) −9.00439 + 9.00439i −0.486192 + 0.486192i −0.907102 0.420911i \(-0.861711\pi\)
0.420911 + 0.907102i \(0.361711\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 5.13681 5.13681i 0.140801 0.140801i −0.633193 0.773994i \(-0.718256\pi\)
0.773994 + 0.633193i \(0.218256\pi\)
\(12\) 0 0
\(13\) −29.7474 36.2228i −0.634649 0.772801i
\(14\) 0 0
\(15\) 41.1534 + 41.1534i 0.708385 + 0.708385i
\(16\) 0 0
\(17\) 41.0920i 0.586251i −0.956074 0.293125i \(-0.905305\pi\)
0.956074 0.293125i \(-0.0946954\pi\)
\(18\) 0 0
\(19\) 28.6094 + 28.6094i 0.345445 + 0.345445i 0.858410 0.512965i \(-0.171453\pi\)
−0.512965 + 0.858410i \(0.671453\pi\)
\(20\) 0 0
\(21\) −27.0132 27.0132i −0.280703 0.280703i
\(22\) 0 0
\(23\) 58.8194 0.533247 0.266624 0.963801i \(-0.414092\pi\)
0.266624 + 0.963801i \(0.414092\pi\)
\(24\) 0 0
\(25\) 251.357i 2.01086i
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) −13.6058 −0.0871216 −0.0435608 0.999051i \(-0.513870\pi\)
−0.0435608 + 0.999051i \(0.513870\pi\)
\(30\) 0 0
\(31\) −163.913 163.913i −0.949668 0.949668i 0.0491243 0.998793i \(-0.484357\pi\)
−0.998793 + 0.0491243i \(0.984357\pi\)
\(32\) 0 0
\(33\) 15.4104 + 15.4104i 0.0812913 + 0.0812913i
\(34\) 0 0
\(35\) 247.041i 1.19307i
\(36\) 0 0
\(37\) −129.152 129.152i −0.573851 0.573851i 0.359351 0.933202i \(-0.382998\pi\)
−0.933202 + 0.359351i \(0.882998\pi\)
\(38\) 0 0
\(39\) 108.669 89.2421i 0.446177 0.366415i
\(40\) 0 0
\(41\) 30.4179 30.4179i 0.115865 0.115865i −0.646797 0.762662i \(-0.723892\pi\)
0.762662 + 0.646797i \(0.223892\pi\)
\(42\) 0 0
\(43\) −342.340 −1.21410 −0.607051 0.794663i \(-0.707648\pi\)
−0.607051 + 0.794663i \(0.707648\pi\)
\(44\) 0 0
\(45\) −123.460 + 123.460i −0.408986 + 0.408986i
\(46\) 0 0
\(47\) 328.489 328.489i 1.01947 1.01947i 0.0196632 0.999807i \(-0.493741\pi\)
0.999807 0.0196632i \(-0.00625940\pi\)
\(48\) 0 0
\(49\) 180.842i 0.527235i
\(50\) 0 0
\(51\) 123.276 0.338472
\(52\) 0 0
\(53\) 109.796 0.284559 0.142279 0.989827i \(-0.454557\pi\)
0.142279 + 0.989827i \(0.454557\pi\)
\(54\) 0 0
\(55\) 140.932i 0.345513i
\(56\) 0 0
\(57\) −85.8283 + 85.8283i −0.199443 + 0.199443i
\(58\) 0 0
\(59\) −262.191 + 262.191i −0.578549 + 0.578549i −0.934503 0.355954i \(-0.884156\pi\)
0.355954 + 0.934503i \(0.384156\pi\)
\(60\) 0 0
\(61\) 69.0168 0.144864 0.0724320 0.997373i \(-0.476924\pi\)
0.0724320 + 0.997373i \(0.476924\pi\)
\(62\) 0 0
\(63\) 81.0396 81.0396i 0.162064 0.162064i
\(64\) 0 0
\(65\) −904.967 88.8295i −1.72688 0.169507i
\(66\) 0 0
\(67\) −138.791 138.791i −0.253075 0.253075i 0.569155 0.822230i \(-0.307270\pi\)
−0.822230 + 0.569155i \(0.807270\pi\)
\(68\) 0 0
\(69\) 176.458i 0.307870i
\(70\) 0 0
\(71\) −185.237 185.237i −0.309629 0.309629i 0.535137 0.844765i \(-0.320260\pi\)
−0.844765 + 0.535137i \(0.820260\pi\)
\(72\) 0 0
\(73\) −597.825 597.825i −0.958494 0.958494i 0.0406781 0.999172i \(-0.487048\pi\)
−0.999172 + 0.0406781i \(0.987048\pi\)
\(74\) 0 0
\(75\) 754.071 1.16097
\(76\) 0 0
\(77\) 92.5078i 0.136912i
\(78\) 0 0
\(79\) 627.547i 0.893728i −0.894602 0.446864i \(-0.852541\pi\)
0.894602 0.446864i \(-0.147459\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 542.734 + 542.734i 0.717745 + 0.717745i 0.968143 0.250398i \(-0.0805615\pi\)
−0.250398 + 0.968143i \(0.580561\pi\)
\(84\) 0 0
\(85\) −563.692 563.692i −0.719306 0.719306i
\(86\) 0 0
\(87\) 40.8173i 0.0502997i
\(88\) 0 0
\(89\) −306.102 306.102i −0.364570 0.364570i 0.500922 0.865492i \(-0.332994\pi\)
−0.865492 + 0.500922i \(0.832994\pi\)
\(90\) 0 0
\(91\) 594.022 + 58.3078i 0.684290 + 0.0671683i
\(92\) 0 0
\(93\) 491.740 491.740i 0.548291 0.548291i
\(94\) 0 0
\(95\) 784.917 0.847693
\(96\) 0 0
\(97\) 1229.81 1229.81i 1.28730 1.28730i 0.350885 0.936419i \(-0.385881\pi\)
0.936419 0.350885i \(-0.114119\pi\)
\(98\) 0 0
\(99\) −46.2313 + 46.2313i −0.0469336 + 0.0469336i
\(100\) 0 0
\(101\) 1764.63i 1.73848i −0.494386 0.869242i \(-0.664607\pi\)
0.494386 0.869242i \(-0.335393\pi\)
\(102\) 0 0
\(103\) 465.459 0.445272 0.222636 0.974902i \(-0.428534\pi\)
0.222636 + 0.974902i \(0.428534\pi\)
\(104\) 0 0
\(105\) −741.124 −0.688822
\(106\) 0 0
\(107\) 790.881i 0.714554i −0.933998 0.357277i \(-0.883705\pi\)
0.933998 0.357277i \(-0.116295\pi\)
\(108\) 0 0
\(109\) 425.633 425.633i 0.374020 0.374020i −0.494919 0.868939i \(-0.664802\pi\)
0.868939 + 0.494919i \(0.164802\pi\)
\(110\) 0 0
\(111\) 387.457 387.457i 0.331313 0.331313i
\(112\) 0 0
\(113\) −540.166 −0.449686 −0.224843 0.974395i \(-0.572187\pi\)
−0.224843 + 0.974395i \(0.572187\pi\)
\(114\) 0 0
\(115\) 806.873 806.873i 0.654272 0.654272i
\(116\) 0 0
\(117\) 267.726 + 326.006i 0.211550 + 0.257600i
\(118\) 0 0
\(119\) 370.008 + 370.008i 0.285030 + 0.285030i
\(120\) 0 0
\(121\) 1278.23i 0.960350i
\(122\) 0 0
\(123\) 91.2538 + 91.2538i 0.0668950 + 0.0668950i
\(124\) 0 0
\(125\) −1733.34 1733.34i −1.24028 1.24028i
\(126\) 0 0
\(127\) 2282.24 1.59462 0.797309 0.603571i \(-0.206256\pi\)
0.797309 + 0.603571i \(0.206256\pi\)
\(128\) 0 0
\(129\) 1027.02i 0.700962i
\(130\) 0 0
\(131\) 1635.72i 1.09094i −0.838129 0.545472i \(-0.816350\pi\)
0.838129 0.545472i \(-0.183650\pi\)
\(132\) 0 0
\(133\) −515.221 −0.335905
\(134\) 0 0
\(135\) −370.381 370.381i −0.236128 0.236128i
\(136\) 0 0
\(137\) −267.758 267.758i −0.166979 0.166979i 0.618671 0.785650i \(-0.287671\pi\)
−0.785650 + 0.618671i \(0.787671\pi\)
\(138\) 0 0
\(139\) 1191.06i 0.726794i 0.931634 + 0.363397i \(0.118383\pi\)
−0.931634 + 0.363397i \(0.881617\pi\)
\(140\) 0 0
\(141\) 985.468 + 985.468i 0.588591 + 0.588591i
\(142\) 0 0
\(143\) −338.877 33.2633i −0.198170 0.0194519i
\(144\) 0 0
\(145\) −186.641 + 186.641i −0.106895 + 0.106895i
\(146\) 0 0
\(147\) −542.525 −0.304400
\(148\) 0 0
\(149\) 2481.47 2481.47i 1.36436 1.36436i 0.496098 0.868267i \(-0.334766\pi\)
0.868267 0.496098i \(-0.165234\pi\)
\(150\) 0 0
\(151\) 182.274 182.274i 0.0982334 0.0982334i −0.656282 0.754516i \(-0.727872\pi\)
0.754516 + 0.656282i \(0.227872\pi\)
\(152\) 0 0
\(153\) 369.828i 0.195417i
\(154\) 0 0
\(155\) −4497.07 −2.33041
\(156\) 0 0
\(157\) −2513.06 −1.27748 −0.638738 0.769424i \(-0.720543\pi\)
−0.638738 + 0.769424i \(0.720543\pi\)
\(158\) 0 0
\(159\) 329.388i 0.164290i
\(160\) 0 0
\(161\) −529.633 + 529.633i −0.259260 + 0.259260i
\(162\) 0 0
\(163\) 1650.41 1650.41i 0.793069 0.793069i −0.188923 0.981992i \(-0.560500\pi\)
0.981992 + 0.188923i \(0.0604996\pi\)
\(164\) 0 0
\(165\) 422.795 0.199482
\(166\) 0 0
\(167\) −2428.77 + 2428.77i −1.12541 + 1.12541i −0.134496 + 0.990914i \(0.542942\pi\)
−0.990914 + 0.134496i \(0.957058\pi\)
\(168\) 0 0
\(169\) −427.189 + 2155.07i −0.194442 + 0.980914i
\(170\) 0 0
\(171\) −257.485 257.485i −0.115148 0.115148i
\(172\) 0 0
\(173\) 2121.86i 0.932496i 0.884654 + 0.466248i \(0.154395\pi\)
−0.884654 + 0.466248i \(0.845605\pi\)
\(174\) 0 0
\(175\) 2263.32 + 2263.32i 0.977661 + 0.977661i
\(176\) 0 0
\(177\) −786.574 786.574i −0.334025 0.334025i
\(178\) 0 0
\(179\) −3736.03 −1.56002 −0.780011 0.625766i \(-0.784787\pi\)
−0.780011 + 0.625766i \(0.784787\pi\)
\(180\) 0 0
\(181\) 3377.75i 1.38711i 0.720406 + 0.693553i \(0.243956\pi\)
−0.720406 + 0.693553i \(0.756044\pi\)
\(182\) 0 0
\(183\) 207.051i 0.0836372i
\(184\) 0 0
\(185\) −3543.37 −1.40818
\(186\) 0 0
\(187\) −211.082 211.082i −0.0825445 0.0825445i
\(188\) 0 0
\(189\) 243.119 + 243.119i 0.0935676 + 0.0935676i
\(190\) 0 0
\(191\) 2547.01i 0.964895i 0.875925 + 0.482448i \(0.160252\pi\)
−0.875925 + 0.482448i \(0.839748\pi\)
\(192\) 0 0
\(193\) 2766.47 + 2766.47i 1.03179 + 1.03179i 0.999478 + 0.0323099i \(0.0102864\pi\)
0.0323099 + 0.999478i \(0.489714\pi\)
\(194\) 0 0
\(195\) 266.488 2714.90i 0.0978648 0.997016i
\(196\) 0 0
\(197\) 581.717 581.717i 0.210384 0.210384i −0.594047 0.804431i \(-0.702471\pi\)
0.804431 + 0.594047i \(0.202471\pi\)
\(198\) 0 0
\(199\) −2241.01 −0.798297 −0.399148 0.916886i \(-0.630694\pi\)
−0.399148 + 0.916886i \(0.630694\pi\)
\(200\) 0 0
\(201\) 416.373 416.373i 0.146113 0.146113i
\(202\) 0 0
\(203\) 122.512 122.512i 0.0423578 0.0423578i
\(204\) 0 0
\(205\) 834.535i 0.284324i
\(206\) 0 0
\(207\) −529.374 −0.177749
\(208\) 0 0
\(209\) 293.922 0.0972777
\(210\) 0 0
\(211\) 236.747i 0.0772434i 0.999254 + 0.0386217i \(0.0122967\pi\)
−0.999254 + 0.0386217i \(0.987703\pi\)
\(212\) 0 0
\(213\) 555.712 555.712i 0.178764 0.178764i
\(214\) 0 0
\(215\) −4696.16 + 4696.16i −1.48965 + 1.48965i
\(216\) 0 0
\(217\) 2951.88 0.923442
\(218\) 0 0
\(219\) 1793.47 1793.47i 0.553387 0.553387i
\(220\) 0 0
\(221\) −1488.47 + 1222.38i −0.453055 + 0.372063i
\(222\) 0 0
\(223\) 2934.75 + 2934.75i 0.881279 + 0.881279i 0.993665 0.112386i \(-0.0358492\pi\)
−0.112386 + 0.993665i \(0.535849\pi\)
\(224\) 0 0
\(225\) 2262.21i 0.670285i
\(226\) 0 0
\(227\) 1861.03 + 1861.03i 0.544144 + 0.544144i 0.924741 0.380597i \(-0.124281\pi\)
−0.380597 + 0.924741i \(0.624281\pi\)
\(228\) 0 0
\(229\) −2720.40 2720.40i −0.785019 0.785019i 0.195654 0.980673i \(-0.437317\pi\)
−0.980673 + 0.195654i \(0.937317\pi\)
\(230\) 0 0
\(231\) −277.523 −0.0790463
\(232\) 0 0
\(233\) 4481.19i 1.25997i −0.776608 0.629984i \(-0.783061\pi\)
0.776608 0.629984i \(-0.216939\pi\)
\(234\) 0 0
\(235\) 9012.31i 2.50170i
\(236\) 0 0
\(237\) 1882.64 0.515994
\(238\) 0 0
\(239\) 3103.05 + 3103.05i 0.839830 + 0.839830i 0.988836 0.149006i \(-0.0476075\pi\)
−0.149006 + 0.988836i \(0.547608\pi\)
\(240\) 0 0
\(241\) 3522.37 + 3522.37i 0.941476 + 0.941476i 0.998380 0.0569037i \(-0.0181228\pi\)
−0.0569037 + 0.998380i \(0.518123\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) 2480.75 + 2480.75i 0.646896 + 0.646896i
\(246\) 0 0
\(247\) 185.260 1887.37i 0.0477239 0.486196i
\(248\) 0 0
\(249\) −1628.20 + 1628.20i −0.414390 + 0.414390i
\(250\) 0 0
\(251\) −7437.96 −1.87044 −0.935219 0.354071i \(-0.884797\pi\)
−0.935219 + 0.354071i \(0.884797\pi\)
\(252\) 0 0
\(253\) 302.144 302.144i 0.0750816 0.0750816i
\(254\) 0 0
\(255\) 1691.08 1691.08i 0.415291 0.415291i
\(256\) 0 0
\(257\) 900.226i 0.218500i −0.994014 0.109250i \(-0.965155\pi\)
0.994014 0.109250i \(-0.0348449\pi\)
\(258\) 0 0
\(259\) 2325.87 0.558003
\(260\) 0 0
\(261\) 122.452 0.0290405
\(262\) 0 0
\(263\) 489.304i 0.114722i 0.998354 + 0.0573608i \(0.0182685\pi\)
−0.998354 + 0.0573608i \(0.981731\pi\)
\(264\) 0 0
\(265\) 1506.16 1506.16i 0.349142 0.349142i
\(266\) 0 0
\(267\) 918.306 918.306i 0.210485 0.210485i
\(268\) 0 0
\(269\) 8008.84 1.81527 0.907635 0.419759i \(-0.137885\pi\)
0.907635 + 0.419759i \(0.137885\pi\)
\(270\) 0 0
\(271\) −2524.78 + 2524.78i −0.565938 + 0.565938i −0.930988 0.365050i \(-0.881052\pi\)
0.365050 + 0.930988i \(0.381052\pi\)
\(272\) 0 0
\(273\) −174.923 + 1782.07i −0.0387797 + 0.395075i
\(274\) 0 0
\(275\) −1291.17 1291.17i −0.283130 0.283130i
\(276\) 0 0
\(277\) 3548.82i 0.769776i 0.922963 + 0.384888i \(0.125760\pi\)
−0.922963 + 0.384888i \(0.874240\pi\)
\(278\) 0 0
\(279\) 1475.22 + 1475.22i 0.316556 + 0.316556i
\(280\) 0 0
\(281\) −3456.24 3456.24i −0.733743 0.733743i 0.237616 0.971359i \(-0.423634\pi\)
−0.971359 + 0.237616i \(0.923634\pi\)
\(282\) 0 0
\(283\) −2211.69 −0.464563 −0.232282 0.972649i \(-0.574619\pi\)
−0.232282 + 0.972649i \(0.574619\pi\)
\(284\) 0 0
\(285\) 2354.75i 0.489416i
\(286\) 0 0
\(287\) 547.790i 0.112666i
\(288\) 0 0
\(289\) 3224.45 0.656310
\(290\) 0 0
\(291\) 3689.43 + 3689.43i 0.743225 + 0.743225i
\(292\) 0 0
\(293\) 4706.80 + 4706.80i 0.938478 + 0.938478i 0.998214 0.0597364i \(-0.0190260\pi\)
−0.0597364 + 0.998214i \(0.519026\pi\)
\(294\) 0 0
\(295\) 7193.38i 1.41971i
\(296\) 0 0
\(297\) −138.694 138.694i −0.0270971 0.0270971i
\(298\) 0 0
\(299\) −1749.72 2130.60i −0.338425 0.412094i
\(300\) 0 0
\(301\) 3082.57 3082.57i 0.590286 0.590286i
\(302\) 0 0
\(303\) 5293.88 1.00371
\(304\) 0 0
\(305\) 946.760 946.760i 0.177742 0.177742i
\(306\) 0 0
\(307\) 252.125 252.125i 0.0468714 0.0468714i −0.683283 0.730154i \(-0.739448\pi\)
0.730154 + 0.683283i \(0.239448\pi\)
\(308\) 0 0
\(309\) 1396.38i 0.257078i
\(310\) 0 0
\(311\) 1704.62 0.310804 0.155402 0.987851i \(-0.450333\pi\)
0.155402 + 0.987851i \(0.450333\pi\)
\(312\) 0 0
\(313\) 5415.34 0.977933 0.488967 0.872303i \(-0.337374\pi\)
0.488967 + 0.872303i \(0.337374\pi\)
\(314\) 0 0
\(315\) 2223.37i 0.397691i
\(316\) 0 0
\(317\) −2676.97 + 2676.97i −0.474302 + 0.474302i −0.903304 0.429002i \(-0.858865\pi\)
0.429002 + 0.903304i \(0.358865\pi\)
\(318\) 0 0
\(319\) −69.8903 + 69.8903i −0.0122668 + 0.0122668i
\(320\) 0 0
\(321\) 2372.64 0.412548
\(322\) 0 0
\(323\) 1175.62 1175.62i 0.202517 0.202517i
\(324\) 0 0
\(325\) −9104.86 + 7477.21i −1.55399 + 1.27619i
\(326\) 0 0
\(327\) 1276.90 + 1276.90i 0.215941 + 0.215941i
\(328\) 0 0
\(329\) 5915.69i 0.991315i
\(330\) 0 0
\(331\) −3653.62 3653.62i −0.606710 0.606710i 0.335375 0.942085i \(-0.391137\pi\)
−0.942085 + 0.335375i \(0.891137\pi\)
\(332\) 0 0
\(333\) 1162.37 + 1162.37i 0.191284 + 0.191284i
\(334\) 0 0
\(335\) −3807.82 −0.621025
\(336\) 0 0
\(337\) 5365.74i 0.867330i 0.901074 + 0.433665i \(0.142780\pi\)
−0.901074 + 0.433665i \(0.857220\pi\)
\(338\) 0 0
\(339\) 1620.50i 0.259626i
\(340\) 0 0
\(341\) −1683.99 −0.267428
\(342\) 0 0
\(343\) −4716.88 4716.88i −0.742529 0.742529i
\(344\) 0 0
\(345\) 2420.62 + 2420.62i 0.377744 + 0.377744i
\(346\) 0 0
\(347\) 5576.25i 0.862677i 0.902190 + 0.431339i \(0.141959\pi\)
−0.902190 + 0.431339i \(0.858041\pi\)
\(348\) 0 0
\(349\) 1806.21 + 1806.21i 0.277032 + 0.277032i 0.831923 0.554891i \(-0.187240\pi\)
−0.554891 + 0.831923i \(0.687240\pi\)
\(350\) 0 0
\(351\) −978.017 + 803.179i −0.148726 + 0.122138i
\(352\) 0 0
\(353\) −1813.36 + 1813.36i −0.273415 + 0.273415i −0.830473 0.557058i \(-0.811930\pi\)
0.557058 + 0.830473i \(0.311930\pi\)
\(354\) 0 0
\(355\) −5082.11 −0.759804
\(356\) 0 0
\(357\) −1110.02 + 1110.02i −0.164562 + 0.164562i
\(358\) 0 0
\(359\) −8955.68 + 8955.68i −1.31661 + 1.31661i −0.400168 + 0.916442i \(0.631048\pi\)
−0.916442 + 0.400168i \(0.868952\pi\)
\(360\) 0 0
\(361\) 5222.00i 0.761336i
\(362\) 0 0
\(363\) −3834.68 −0.554459
\(364\) 0 0
\(365\) −16401.7 −2.35207
\(366\) 0 0
\(367\) 94.3385i 0.0134181i −0.999977 0.00670903i \(-0.997864\pi\)
0.999977 0.00670903i \(-0.00213557\pi\)
\(368\) 0 0
\(369\) −273.761 + 273.761i −0.0386218 + 0.0386218i
\(370\) 0 0
\(371\) −988.645 + 988.645i −0.138350 + 0.138350i
\(372\) 0 0
\(373\) −1045.50 −0.145131 −0.0725654 0.997364i \(-0.523119\pi\)
−0.0725654 + 0.997364i \(0.523119\pi\)
\(374\) 0 0
\(375\) 5200.03 5200.03i 0.716075 0.716075i
\(376\) 0 0
\(377\) 404.736 + 492.840i 0.0552916 + 0.0673277i
\(378\) 0 0
\(379\) −8530.89 8530.89i −1.15621 1.15621i −0.985285 0.170922i \(-0.945325\pi\)
−0.170922 0.985285i \(-0.554675\pi\)
\(380\) 0 0
\(381\) 6846.73i 0.920653i
\(382\) 0 0
\(383\) 9103.57 + 9103.57i 1.21454 + 1.21454i 0.969516 + 0.245029i \(0.0787975\pi\)
0.245029 + 0.969516i \(0.421203\pi\)
\(384\) 0 0
\(385\) 1269.01 + 1269.01i 0.167986 + 0.167986i
\(386\) 0 0
\(387\) 3081.06 0.404701
\(388\) 0 0
\(389\) 6371.12i 0.830408i −0.909728 0.415204i \(-0.863710\pi\)
0.909728 0.415204i \(-0.136290\pi\)
\(390\) 0 0
\(391\) 2417.00i 0.312617i
\(392\) 0 0
\(393\) 4907.17 0.629857
\(394\) 0 0
\(395\) −8608.57 8608.57i −1.09657 1.09657i
\(396\) 0 0
\(397\) 4784.83 + 4784.83i 0.604896 + 0.604896i 0.941608 0.336712i \(-0.109315\pi\)
−0.336712 + 0.941608i \(0.609315\pi\)
\(398\) 0 0
\(399\) 1545.66i 0.193935i
\(400\) 0 0
\(401\) 8438.09 + 8438.09i 1.05082 + 1.05082i 0.998638 + 0.0521812i \(0.0166173\pi\)
0.0521812 + 0.998638i \(0.483383\pi\)
\(402\) 0 0
\(403\) −1061.42 + 10813.4i −0.131199 + 1.33661i
\(404\) 0 0
\(405\) 1111.14 1111.14i 0.136329 0.136329i
\(406\) 0 0
\(407\) −1326.86 −0.161597
\(408\) 0 0
\(409\) 5772.49 5772.49i 0.697876 0.697876i −0.266076 0.963952i \(-0.585727\pi\)
0.963952 + 0.266076i \(0.0857272\pi\)
\(410\) 0 0
\(411\) 803.274 803.274i 0.0964053 0.0964053i
\(412\) 0 0
\(413\) 4721.75i 0.562571i
\(414\) 0 0
\(415\) 14890.3 1.76129
\(416\) 0 0
\(417\) −3573.18 −0.419614
\(418\) 0 0
\(419\) 3381.06i 0.394213i 0.980382 + 0.197107i \(0.0631545\pi\)
−0.980382 + 0.197107i \(0.936845\pi\)
\(420\) 0 0
\(421\) 2293.30 2293.30i 0.265484 0.265484i −0.561794 0.827277i \(-0.689888\pi\)
0.827277 + 0.561794i \(0.189888\pi\)
\(422\) 0 0
\(423\) −2956.40 + 2956.40i −0.339823 + 0.339823i
\(424\) 0 0
\(425\) −10328.8 −1.17887
\(426\) 0 0
\(427\) −621.455 + 621.455i −0.0704316 + 0.0704316i
\(428\) 0 0
\(429\) 99.7900 1016.63i 0.0112306 0.114413i
\(430\) 0 0
\(431\) −6460.43 6460.43i −0.722014 0.722014i 0.247001 0.969015i \(-0.420555\pi\)
−0.969015 + 0.247001i \(0.920555\pi\)
\(432\) 0 0
\(433\) 8343.41i 0.926001i −0.886358 0.463001i \(-0.846773\pi\)
0.886358 0.463001i \(-0.153227\pi\)
\(434\) 0 0
\(435\) −559.924 559.924i −0.0617157 0.0617157i
\(436\) 0 0
\(437\) 1682.79 + 1682.79i 0.184207 + 0.184207i
\(438\) 0 0
\(439\) 434.752 0.0472655 0.0236328 0.999721i \(-0.492477\pi\)
0.0236328 + 0.999721i \(0.492477\pi\)
\(440\) 0 0
\(441\) 1627.58i 0.175745i
\(442\) 0 0
\(443\) 8889.00i 0.953339i 0.879083 + 0.476669i \(0.158156\pi\)
−0.879083 + 0.476669i \(0.841844\pi\)
\(444\) 0 0
\(445\) −8398.11 −0.894626
\(446\) 0 0
\(447\) 7444.42 + 7444.42i 0.787716 + 0.787716i
\(448\) 0 0
\(449\) −10551.8 10551.8i −1.10907 1.10907i −0.993273 0.115793i \(-0.963059\pi\)
−0.115793 0.993273i \(-0.536941\pi\)
\(450\) 0 0
\(451\) 312.503i 0.0326279i
\(452\) 0 0
\(453\) 546.822 + 546.822i 0.0567151 + 0.0567151i
\(454\) 0 0
\(455\) 8948.54 7348.83i 0.922009 0.757183i
\(456\) 0 0
\(457\) 188.466 188.466i 0.0192912 0.0192912i −0.697395 0.716687i \(-0.745658\pi\)
0.716687 + 0.697395i \(0.245658\pi\)
\(458\) 0 0
\(459\) −1109.48 −0.112824
\(460\) 0 0
\(461\) 10294.2 10294.2i 1.04002 1.04002i 0.0408504 0.999165i \(-0.486993\pi\)
0.999165 0.0408504i \(-0.0130067\pi\)
\(462\) 0 0
\(463\) 8477.15 8477.15i 0.850900 0.850900i −0.139344 0.990244i \(-0.544499\pi\)
0.990244 + 0.139344i \(0.0444994\pi\)
\(464\) 0 0
\(465\) 13491.2i 1.34546i
\(466\) 0 0
\(467\) −15708.8 −1.55656 −0.778281 0.627916i \(-0.783908\pi\)
−0.778281 + 0.627916i \(0.783908\pi\)
\(468\) 0 0
\(469\) 2499.46 0.246086
\(470\) 0 0
\(471\) 7539.17i 0.737551i
\(472\) 0 0
\(473\) −1758.54 + 1758.54i −0.170946 + 0.170946i
\(474\) 0 0
\(475\) 7191.18 7191.18i 0.694640 0.694640i
\(476\) 0 0
\(477\) −988.163 −0.0948530
\(478\) 0 0
\(479\) 5409.75 5409.75i 0.516028 0.516028i −0.400339 0.916367i \(-0.631108\pi\)
0.916367 + 0.400339i \(0.131108\pi\)
\(480\) 0 0
\(481\) −836.323 + 8520.20i −0.0792787 + 0.807667i
\(482\) 0 0
\(483\) −1588.90 1588.90i −0.149684 0.149684i
\(484\) 0 0
\(485\) 33740.7i 3.15894i
\(486\) 0 0
\(487\) 11371.6 + 11371.6i 1.05810 + 1.05810i 0.998205 + 0.0598975i \(0.0190774\pi\)
0.0598975 + 0.998205i \(0.480923\pi\)
\(488\) 0 0
\(489\) 4951.24 + 4951.24i 0.457879 + 0.457879i
\(490\) 0 0
\(491\) 8193.44 0.753085 0.376543 0.926399i \(-0.377113\pi\)
0.376543 + 0.926399i \(0.377113\pi\)
\(492\) 0 0
\(493\) 559.088i 0.0510751i
\(494\) 0 0
\(495\) 1268.39i 0.115171i
\(496\) 0 0
\(497\) 3335.90 0.301078
\(498\) 0 0
\(499\) 4086.38 + 4086.38i 0.366596 + 0.366596i 0.866234 0.499638i \(-0.166534\pi\)
−0.499638 + 0.866234i \(0.666534\pi\)
\(500\) 0 0
\(501\) −7286.30 7286.30i −0.649756 0.649756i
\(502\) 0 0
\(503\) 149.395i 0.0132430i 0.999978 + 0.00662148i \(0.00210770\pi\)
−0.999978 + 0.00662148i \(0.997892\pi\)
\(504\) 0 0
\(505\) −24206.8 24206.8i −2.13305 2.13305i
\(506\) 0 0
\(507\) −6465.20 1281.57i −0.566331 0.112261i
\(508\) 0 0
\(509\) 574.591 574.591i 0.0500359 0.0500359i −0.681646 0.731682i \(-0.738736\pi\)
0.731682 + 0.681646i \(0.238736\pi\)
\(510\) 0 0
\(511\) 10766.1 0.932024
\(512\) 0 0
\(513\) 772.454 772.454i 0.0664809 0.0664809i
\(514\) 0 0
\(515\) 6385.08 6385.08i 0.546331 0.546331i
\(516\) 0 0
\(517\) 3374.78i 0.287084i
\(518\) 0 0
\(519\) −6365.57 −0.538377
\(520\) 0 0
\(521\) −2636.90 −0.221736 −0.110868 0.993835i \(-0.535363\pi\)
−0.110868 + 0.993835i \(0.535363\pi\)
\(522\) 0 0
\(523\) 16807.1i 1.40520i 0.711583 + 0.702602i \(0.247978\pi\)
−0.711583 + 0.702602i \(0.752022\pi\)
\(524\) 0 0
\(525\) −6789.95 + 6789.95i −0.564453 + 0.564453i
\(526\) 0 0
\(527\) −6735.52 + 6735.52i −0.556744 + 0.556744i
\(528\) 0 0
\(529\) −8707.28 −0.715648
\(530\) 0 0
\(531\) 2359.72 2359.72i 0.192850 0.192850i
\(532\) 0 0
\(533\) −2006.68 196.971i −0.163075 0.0160070i
\(534\) 0 0
\(535\) −10849.2 10849.2i −0.876729 0.876729i
\(536\) 0 0
\(537\) 11208.1i 0.900679i
\(538\) 0 0
\(539\) 928.950 + 928.950i 0.0742351 + 0.0742351i
\(540\) 0 0
\(541\) 4408.78 + 4408.78i 0.350367 + 0.350367i 0.860246 0.509879i \(-0.170310\pi\)
−0.509879 + 0.860246i \(0.670310\pi\)
\(542\) 0 0
\(543\) −10133.2 −0.800846
\(544\) 0 0
\(545\) 11677.5i 0.917815i
\(546\) 0 0
\(547\) 23307.3i 1.82184i −0.412582 0.910920i \(-0.635373\pi\)
0.412582 0.910920i \(-0.364627\pi\)
\(548\) 0 0
\(549\) −621.152 −0.0482880
\(550\) 0 0
\(551\) −389.253 389.253i −0.0300957 0.0300957i
\(552\) 0 0
\(553\) 5650.68 + 5650.68i 0.434523 + 0.434523i
\(554\) 0 0
\(555\) 10630.1i 0.813015i
\(556\) 0 0
\(557\) 1815.00 + 1815.00i 0.138069 + 0.138069i 0.772763 0.634695i \(-0.218874\pi\)
−0.634695 + 0.772763i \(0.718874\pi\)
\(558\) 0 0
\(559\) 10183.7 + 12400.5i 0.770528 + 0.938259i
\(560\) 0 0
\(561\) 633.245 633.245i 0.0476571 0.0476571i
\(562\) 0 0
\(563\) 16303.7 1.22046 0.610229 0.792225i \(-0.291077\pi\)
0.610229 + 0.792225i \(0.291077\pi\)
\(564\) 0 0
\(565\) −7409.89 + 7409.89i −0.551746 + 0.551746i
\(566\) 0 0
\(567\) −729.356 + 729.356i −0.0540213 + 0.0540213i
\(568\) 0 0
\(569\) 10877.8i 0.801443i 0.916200 + 0.400722i \(0.131241\pi\)
−0.916200 + 0.400722i \(0.868759\pi\)
\(570\) 0 0
\(571\) 21731.5 1.59270 0.796352 0.604833i \(-0.206760\pi\)
0.796352 + 0.604833i \(0.206760\pi\)
\(572\) 0 0
\(573\) −7641.02 −0.557083
\(574\) 0 0
\(575\) 14784.7i 1.07228i
\(576\) 0 0
\(577\) −12694.3 + 12694.3i −0.915895 + 0.915895i −0.996728 0.0808325i \(-0.974242\pi\)
0.0808325 + 0.996728i \(0.474242\pi\)
\(578\) 0 0
\(579\) −8299.42 + 8299.42i −0.595703 + 0.595703i
\(580\) 0 0
\(581\) −9773.99 −0.697923
\(582\) 0 0
\(583\) 564.001 564.001i 0.0400661 0.0400661i
\(584\) 0 0
\(585\) 8144.70 + 799.465i 0.575628 + 0.0565023i
\(586\) 0 0
\(587\) 1253.09 + 1253.09i 0.0881103 + 0.0881103i 0.749788 0.661678i \(-0.230155\pi\)
−0.661678 + 0.749788i \(0.730155\pi\)
\(588\) 0 0
\(589\) 9378.93i 0.656116i
\(590\) 0 0
\(591\) 1745.15 + 1745.15i 0.121465 + 0.121465i
\(592\) 0 0
\(593\) 13411.8 + 13411.8i 0.928762 + 0.928762i 0.997626 0.0688639i \(-0.0219374\pi\)
−0.0688639 + 0.997626i \(0.521937\pi\)
\(594\) 0 0
\(595\) 10151.4 0.699441
\(596\) 0 0
\(597\) 6723.03i 0.460897i
\(598\) 0 0
\(599\) 7464.13i 0.509142i 0.967054 + 0.254571i \(0.0819342\pi\)
−0.967054 + 0.254571i \(0.918066\pi\)
\(600\) 0 0
\(601\) 17257.4 1.17128 0.585642 0.810570i \(-0.300842\pi\)
0.585642 + 0.810570i \(0.300842\pi\)
\(602\) 0 0
\(603\) 1249.12 + 1249.12i 0.0843584 + 0.0843584i
\(604\) 0 0
\(605\) 17534.5 + 17534.5i 1.17831 + 1.17831i
\(606\) 0 0
\(607\) 21613.0i 1.44521i 0.691259 + 0.722607i \(0.257057\pi\)
−0.691259 + 0.722607i \(0.742943\pi\)
\(608\) 0 0
\(609\) 367.535 + 367.535i 0.0244553 + 0.0244553i
\(610\) 0 0
\(611\) −21670.5 2127.13i −1.43485 0.140842i
\(612\) 0 0
\(613\) −645.520 + 645.520i −0.0425323 + 0.0425323i −0.728053 0.685521i \(-0.759575\pi\)
0.685521 + 0.728053i \(0.259575\pi\)
\(614\) 0 0
\(615\) 2503.61 0.164155
\(616\) 0 0
\(617\) −14221.1 + 14221.1i −0.927910 + 0.927910i −0.997571 0.0696608i \(-0.977808\pi\)
0.0696608 + 0.997571i \(0.477808\pi\)
\(618\) 0 0
\(619\) −2498.37 + 2498.37i −0.162226 + 0.162226i −0.783552 0.621326i \(-0.786594\pi\)
0.621326 + 0.783552i \(0.286594\pi\)
\(620\) 0 0
\(621\) 1588.12i 0.102623i
\(622\) 0 0
\(623\) 5512.53 0.354502
\(624\) 0 0
\(625\) −16135.7 −1.03269
\(626\) 0 0
\(627\) 881.767i 0.0561633i
\(628\) 0 0
\(629\) −5307.12 + 5307.12i −0.336421 + 0.336421i
\(630\) 0 0
\(631\) 4879.60 4879.60i 0.307850 0.307850i −0.536225 0.844075i \(-0.680150\pi\)
0.844075 + 0.536225i \(0.180150\pi\)
\(632\) 0 0
\(633\) −710.242 −0.0445965
\(634\) 0 0
\(635\) 31307.4 31307.4i 1.95653 1.95653i
\(636\) 0 0
\(637\) 6550.60 5379.57i 0.407448 0.334609i
\(638\) 0 0
\(639\) 1667.14 + 1667.14i 0.103210 + 0.103210i
\(640\) 0 0
\(641\) 18009.6i 1.10973i −0.831940 0.554866i \(-0.812770\pi\)
0.831940 0.554866i \(-0.187230\pi\)
\(642\) 0 0
\(643\) −20402.6 20402.6i −1.25132 1.25132i −0.955127 0.296198i \(-0.904281\pi\)
−0.296198 0.955127i \(-0.595719\pi\)
\(644\) 0 0
\(645\) −14088.5 14088.5i −0.860051 0.860051i
\(646\) 0 0
\(647\) −22975.7 −1.39609 −0.698044 0.716055i \(-0.745946\pi\)
−0.698044 + 0.716055i \(0.745946\pi\)
\(648\) 0 0
\(649\) 2693.66i 0.162920i
\(650\) 0 0
\(651\) 8855.65i 0.533149i
\(652\) 0 0
\(653\) 12090.4 0.724554 0.362277 0.932071i \(-0.382000\pi\)
0.362277 + 0.932071i \(0.382000\pi\)
\(654\) 0 0
\(655\) −22438.5 22438.5i −1.33854 1.33854i
\(656\) 0 0
\(657\) 5380.42 + 5380.42i 0.319498 + 0.319498i
\(658\) 0 0
\(659\) 29644.6i 1.75233i −0.482007 0.876167i \(-0.660092\pi\)
0.482007 0.876167i \(-0.339908\pi\)
\(660\) 0 0
\(661\) −12887.9 12887.9i −0.758366 0.758366i 0.217659 0.976025i \(-0.430158\pi\)
−0.976025 + 0.217659i \(0.930158\pi\)
\(662\) 0 0
\(663\) −3667.13 4465.40i −0.214811 0.261572i
\(664\) 0 0
\(665\) −7067.71 + 7067.71i −0.412141 + 0.412141i
\(666\) 0 0
\(667\) −800.283 −0.0464574
\(668\) 0 0
\(669\) −8804.24 + 8804.24i −0.508807 + 0.508807i
\(670\) 0 0
\(671\) 354.527 354.527i 0.0203969 0.0203969i
\(672\) 0 0
\(673\) 4371.82i 0.250403i 0.992131 + 0.125202i \(0.0399578\pi\)
−0.992131 + 0.125202i \(0.960042\pi\)
\(674\) 0 0
\(675\) −6786.64 −0.386989
\(676\) 0 0
\(677\) 6590.00 0.374112 0.187056 0.982349i \(-0.440105\pi\)
0.187056 + 0.982349i \(0.440105\pi\)
\(678\) 0 0
\(679\) 22147.4i 1.25175i
\(680\) 0 0
\(681\) −5583.08 + 5583.08i −0.314162 + 0.314162i
\(682\) 0 0
\(683\) 2427.54 2427.54i 0.135999 0.135999i −0.635830 0.771829i \(-0.719342\pi\)
0.771829 + 0.635830i \(0.219342\pi\)
\(684\) 0 0
\(685\) −7346.11 −0.409753
\(686\) 0 0
\(687\) 8161.21 8161.21i 0.453231 0.453231i
\(688\) 0 0
\(689\) −3266.14 3977.12i −0.180595 0.219907i
\(690\) 0 0
\(691\) −13332.7 13332.7i −0.734008 0.734008i 0.237403 0.971411i \(-0.423704\pi\)
−0.971411 + 0.237403i \(0.923704\pi\)
\(692\) 0 0
\(693\) 832.570i 0.0456374i
\(694\) 0 0
\(695\) 16338.7 + 16338.7i 0.891746 + 0.891746i
\(696\) 0 0
\(697\) −1249.93 1249.93i −0.0679262 0.0679262i
\(698\) 0 0
\(699\) 13443.6 0.727443
\(700\) 0 0
\(701\) 17271.4i 0.930572i −0.885160 0.465286i \(-0.845951\pi\)
0.885160 0.465286i \(-0.154049\pi\)
\(702\) 0 0
\(703\) 7389.94i 0.396468i
\(704\) 0 0
\(705\) 27036.9 1.44435
\(706\) 0 0
\(707\) 15889.4 + 15889.4i 0.845237 + 0.845237i
\(708\) 0 0
\(709\) 18290.8 + 18290.8i 0.968867 + 0.968867i 0.999530 0.0306626i \(-0.00976173\pi\)
−0.0306626 + 0.999530i \(0.509762\pi\)
\(710\) 0 0
\(711\) 5647.92i 0.297909i
\(712\) 0 0
\(713\) −9641.28 9641.28i −0.506408 0.506408i
\(714\) 0 0
\(715\) −5104.95 + 4192.35i −0.267013 + 0.219280i
\(716\) 0 0
\(717\) −9309.14 + 9309.14i −0.484876 + 0.484876i
\(718\) 0 0
\(719\) 36123.2 1.87367 0.936833 0.349776i \(-0.113742\pi\)
0.936833 + 0.349776i \(0.113742\pi\)
\(720\) 0 0
\(721\) −4191.18 + 4191.18i −0.216488 + 0.216488i
\(722\) 0 0
\(723\) −10567.1 + 10567.1i −0.543561 + 0.543561i
\(724\) 0 0
\(725\) 3419.90i 0.175189i
\(726\) 0 0
\(727\) 31610.5 1.61261 0.806306 0.591499i \(-0.201464\pi\)
0.806306 + 0.591499i \(0.201464\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 14067.4i 0.711768i
\(732\) 0 0
\(733\) 20533.6 20533.6i 1.03469 1.03469i 0.0353108 0.999376i \(-0.488758\pi\)
0.999376 0.0353108i \(-0.0112421\pi\)
\(734\) 0 0
\(735\) −7442.26 + 7442.26i −0.373486 + 0.373486i
\(736\) 0 0
\(737\) −1425.89 −0.0712663
\(738\) 0 0
\(739\) −11889.5 + 11889.5i −0.591832 + 0.591832i −0.938126 0.346294i \(-0.887440\pi\)
0.346294 + 0.938126i \(0.387440\pi\)
\(740\) 0 0
\(741\) 5662.11 + 555.779i 0.280705 + 0.0275534i
\(742\) 0 0
\(743\) 18983.2 + 18983.2i 0.937315 + 0.937315i 0.998148 0.0608329i \(-0.0193757\pi\)
−0.0608329 + 0.998148i \(0.519376\pi\)
\(744\) 0 0
\(745\) 68080.8i 3.34804i
\(746\) 0 0
\(747\) −4884.61 4884.61i −0.239248 0.239248i
\(748\) 0 0
\(749\) 7121.40 + 7121.40i 0.347410 + 0.347410i
\(750\) 0 0
\(751\) −32739.5 −1.59079 −0.795394 0.606092i \(-0.792736\pi\)
−0.795394 + 0.606092i \(0.792736\pi\)
\(752\) 0 0
\(753\) 22313.9i 1.07990i
\(754\) 0 0
\(755\) 5000.80i 0.241057i
\(756\) 0 0
\(757\) 10925.0 0.524538 0.262269 0.964995i \(-0.415529\pi\)
0.262269 + 0.964995i \(0.415529\pi\)
\(758\) 0 0
\(759\) 906.432 + 906.432i 0.0433484 + 0.0433484i
\(760\) 0 0
\(761\) 22481.9 + 22481.9i 1.07092 + 1.07092i 0.997285 + 0.0736331i \(0.0234594\pi\)
0.0736331 + 0.997285i \(0.476541\pi\)
\(762\) 0 0
\(763\) 7665.13i 0.363691i
\(764\) 0 0
\(765\) 5073.23 + 5073.23i 0.239769 + 0.239769i
\(766\) 0 0
\(767\) 17296.8 + 1697.82i 0.814279 + 0.0799277i
\(768\) 0 0
\(769\) 3212.83 3212.83i 0.150660 0.150660i −0.627753 0.778413i \(-0.716025\pi\)
0.778413 + 0.627753i \(0.216025\pi\)
\(770\) 0 0
\(771\) 2700.68 0.126151
\(772\) 0 0
\(773\) 11867.0 11867.0i 0.552168 0.552168i −0.374898 0.927066i \(-0.622322\pi\)
0.927066 + 0.374898i \(0.122322\pi\)
\(774\) 0 0
\(775\) −41200.8 + 41200.8i −1.90965 + 1.90965i
\(776\) 0 0
\(777\) 6977.62i 0.322163i
\(778\) 0 0
\(779\) 1740.48 0.0800502
\(780\) 0 0
\(781\) −1903.06 −0.0871919
\(782\) 0 0
\(783\) 367.356i 0.0167666i
\(784\) 0 0
\(785\) −34473.6 + 34473.6i −1.56741 + 1.56741i
\(786\) 0 0
\(787\) −9364.89 + 9364.89i −0.424171 + 0.424171i −0.886637 0.462466i \(-0.846965\pi\)
0.462466 + 0.886637i \(0.346965\pi\)
\(788\) 0 0
\(789\) −1467.91 −0.0662346
\(790\) 0 0
\(791\) 4863.86 4863.86i 0.218634 0.218634i
\(792\) 0 0
\(793\) −2053.07 2499.99i −0.0919377 0.111951i
\(794\) 0 0
\(795\) 4518.48 + 4518.48i 0.201577 + 0.201577i
\(796\) 0 0
\(797\) 5540.68i 0.246249i −0.992391 0.123125i \(-0.960708\pi\)
0.992391 0.123125i \(-0.0392915\pi\)
\(798\) 0 0
\(799\) −13498.3 13498.3i −0.597665 0.597665i
\(800\) 0 0
\(801\) 2754.92 + 2754.92i 0.121523 + 0.121523i
\(802\) 0 0
\(803\) −6141.83 −0.269913
\(804\) 0 0
\(805\) 14530.8i 0.636203i
\(806\) 0 0
\(807\) 24026.5i 1.04805i
\(808\) 0 0
\(809\) 756.806 0.0328898 0.0164449 0.999865i \(-0.494765\pi\)
0.0164449 + 0.999865i \(0.494765\pi\)
\(810\) 0 0
\(811\) −23212.8 23212.8i −1.00507 1.00507i −0.999987 0.00508197i \(-0.998382\pi\)
−0.00508197 0.999987i \(-0.501618\pi\)
\(812\) 0 0
\(813\) −7574.33 7574.33i −0.326745 0.326745i
\(814\) 0 0
\(815\) 45280.1i 1.94613i
\(816\) 0 0
\(817\) −9794.15 9794.15i −0.419405 0.419405i
\(818\) 0 0
\(819\) −5346.20 524.770i −0.228097 0.0223894i
\(820\) 0 0
\(821\) −11727.2 + 11727.2i −0.498518 + 0.498518i −0.910977 0.412458i \(-0.864670\pi\)
0.412458 + 0.910977i \(0.364670\pi\)
\(822\) 0 0
\(823\) −4551.94 −0.192796 −0.0963978 0.995343i \(-0.530732\pi\)
−0.0963978 + 0.995343i \(0.530732\pi\)
\(824\) 0 0
\(825\) 3873.52 3873.52i 0.163465 0.163465i
\(826\) 0 0
\(827\) 10079.8 10079.8i 0.423833 0.423833i −0.462688 0.886521i \(-0.653115\pi\)
0.886521 + 0.462688i \(0.153115\pi\)
\(828\) 0 0
\(829\) 2208.99i 0.0925468i 0.998929 + 0.0462734i \(0.0147345\pi\)
−0.998929 + 0.0462734i \(0.985265\pi\)
\(830\) 0 0
\(831\) −10646.5 −0.444430
\(832\) 0 0
\(833\) 7431.14 0.309092
\(834\) 0 0
\(835\) 66634.7i 2.76166i
\(836\) 0 0
\(837\) −4425.66 + 4425.66i −0.182764 + 0.182764i
\(838\) 0 0
\(839\) −24447.0 + 24447.0i −1.00597 + 1.00597i −0.00598415 + 0.999982i \(0.501905\pi\)
−0.999982 + 0.00598415i \(0.998095\pi\)
\(840\) 0 0
\(841\) −24203.9 −0.992410
\(842\) 0 0
\(843\) 10368.7 10368.7i 0.423627 0.423627i
\(844\) 0 0
\(845\) 23702.7 + 35422.9i 0.964969 + 1.44211i
\(846\) 0 0
\(847\) −11509.7 11509.7i −0.466914 0.466914i
\(848\) 0 0
\(849\) 6635.07i 0.268216i
\(850\) 0 0
\(851\) −7596.65 7596.65i −0.306004 0.306004i
\(852\) 0 0
\(853\) 20833.5 + 20833.5i 0.836253 + 0.836253i 0.988364 0.152110i \(-0.0486069\pi\)
−0.152110 + 0.988364i \(0.548607\pi\)
\(854\) 0 0
\(855\) −7064.26 −0.282564
\(856\) 0 0
\(857\) 21453.2i 0.855108i 0.903990 + 0.427554i \(0.140625\pi\)
−0.903990 + 0.427554i \(0.859375\pi\)
\(858\) 0 0
\(859\) 25866.6i 1.02742i −0.857962 0.513712i \(-0.828270\pi\)
0.857962 0.513712i \(-0.171730\pi\)
\(860\) 0 0
\(861\) −1643.37 −0.0650475
\(862\) 0 0
\(863\) −10638.3 10638.3i −0.419620 0.419620i 0.465453 0.885073i \(-0.345891\pi\)
−0.885073 + 0.465453i \(0.845891\pi\)
\(864\) 0 0
\(865\) 29107.2 + 29107.2i 1.14413 + 1.14413i
\(866\) 0 0
\(867\) 9673.35i 0.378921i
\(868\) 0 0
\(869\) −3223.59 3223.59i −0.125838 0.125838i
\(870\) 0 0
\(871\) −898.739 + 9156.08i −0.0349628 + 0.356190i
\(872\) 0 0
\(873\) −11068.3 + 11068.3i −0.429101 + 0.429101i
\(874\) 0 0
\(875\) 31215.4 1.20603
\(876\) 0 0
\(877\) 27081.2 27081.2i 1.04272 1.04272i 0.0436767 0.999046i \(-0.486093\pi\)
0.999046 0.0436767i \(-0.0139072\pi\)
\(878\) 0 0
\(879\) −14120.4 + 14120.4i −0.541830 + 0.541830i
\(880\) 0 0
\(881\) 8767.54i 0.335285i 0.985848 + 0.167642i \(0.0536154\pi\)
−0.985848 + 0.167642i \(0.946385\pi\)
\(882\) 0 0
\(883\) −28566.9 −1.08873 −0.544367 0.838847i \(-0.683230\pi\)
−0.544367 + 0.838847i \(0.683230\pi\)
\(884\) 0 0
\(885\) −21580.2 −0.819671
\(886\) 0 0
\(887\) 20405.9i 0.772449i −0.922405 0.386224i \(-0.873779\pi\)
0.922405 0.386224i \(-0.126221\pi\)
\(888\) 0 0
\(889\) −20550.2 + 20550.2i −0.775290 + 0.775290i
\(890\) 0 0
\(891\) 416.082 416.082i 0.0156445 0.0156445i
\(892\) 0 0
\(893\) 18795.8 0.704341
\(894\) 0 0
\(895\) −51250.2 + 51250.2i −1.91408 + 1.91408i
\(896\) 0 0
\(897\) 6391.81 5249.16i 0.237922 0.195390i
\(898\) 0 0
\(899\) 2230.17 + 2230.17i 0.0827367 + 0.0827367i
\(900\) 0 0
\(901\) 4511.73i 0.166823i
\(902\) 0 0
\(903\) 9247.70 + 9247.70i 0.340802 + 0.340802i
\(904\) 0 0
\(905\) 46335.3 + 46335.3i 1.70192 + 1.70192i
\(906\) 0 0
\(907\) 43074.1 1.57690 0.788452 0.615096i \(-0.210883\pi\)
0.788452 + 0.615096i \(0.210883\pi\)
\(908\) 0 0
\(909\) 15881.6i 0.579495i
\(910\) 0 0
\(911\) 45705.5i 1.66223i −0.556101 0.831115i \(-0.687703\pi\)
0.556101 0.831115i \(-0.312297\pi\)
\(912\) 0 0
\(913\) 5575.85 0.202118
\(914\) 0 0
\(915\) 2840.28 + 2840.28i 0.102619 + 0.102619i
\(916\) 0 0
\(917\) 14728.7 + 14728.7i 0.530408 + 0.530408i
\(918\) 0 0
\(919\) 37095.3i 1.33151i −0.746168 0.665757i \(-0.768109\pi\)
0.746168 0.665757i \(-0.231891\pi\)
\(920\) 0 0
\(921\) 756.375 + 756.375i 0.0270612 + 0.0270612i
\(922\) 0 0
\(923\) −1199.50 + 12220.2i −0.0427758 + 0.435787i
\(924\) 0 0
\(925\) −32463.3 + 32463.3i −1.15393 + 1.15393i
\(926\) 0 0
\(927\) −4189.13 −0.148424
\(928\) 0 0
\(929\) 3260.29 3260.29i 0.115142 0.115142i −0.647188 0.762330i \(-0.724055\pi\)
0.762330 + 0.647188i \(0.224055\pi\)
\(930\) 0 0
\(931\) −5173.78 + 5173.78i −0.182131 + 0.182131i
\(932\) 0 0
\(933\) 5113.86i 0.179443i
\(934\) 0 0
\(935\) −5791.16 −0.202557
\(936\) 0 0
\(937\) 32258.5 1.12469 0.562347 0.826901i \(-0.309898\pi\)
0.562347 + 0.826901i \(0.309898\pi\)
\(938\) 0 0
\(939\) 16246.0i 0.564610i
\(940\) 0 0
\(941\) −13982.5 + 13982.5i −0.484394 + 0.484394i −0.906532 0.422137i \(-0.861280\pi\)
0.422137 + 0.906532i \(0.361280\pi\)
\(942\) 0 0
\(943\) 1789.16 1789.16i 0.0617849 0.0617849i
\(944\) 0 0
\(945\) 6670.11 0.229607
\(946\) 0 0
\(947\) 2521.02 2521.02i 0.0865071 0.0865071i −0.662529 0.749036i \(-0.730517\pi\)
0.749036 + 0.662529i \(0.230517\pi\)
\(948\) 0 0
\(949\) −3871.20 + 39438.6i −0.132418 + 1.34903i
\(950\) 0 0
\(951\) −8030.92 8030.92i −0.273838 0.273838i
\(952\) 0 0
\(953\) 7398.75i 0.251489i 0.992063 + 0.125745i \(0.0401320\pi\)
−0.992063 + 0.125745i \(0.959868\pi\)
\(954\) 0 0
\(955\) 34939.4 + 34939.4i 1.18389 + 1.18389i
\(956\) 0 0
\(957\) −209.671 209.671i −0.00708223 0.00708223i
\(958\) 0 0
\(959\) 4822.00 0.162368
\(960\) 0 0
\(961\) 23944.2i 0.803740i
\(962\) 0 0
\(963\) 7117.93i 0.238185i
\(964\) 0 0
\(965\) 75899.9 2.53192
\(966\) 0 0
\(967\) −35721.3 35721.3i −1.18792 1.18792i −0.977642 0.210278i \(-0.932563\pi\)
−0.210278 0.977642i \(-0.567437\pi\)
\(968\) 0 0
\(969\) 3526.85 + 3526.85i 0.116923 + 0.116923i
\(970\) 0 0
\(971\) 11414.2i 0.377239i 0.982050 + 0.188620i \(0.0604013\pi\)
−0.982050 + 0.188620i \(0.939599\pi\)
\(972\) 0 0
\(973\) −10724.8 10724.8i −0.353361 0.353361i
\(974\) 0 0
\(975\) −22431.6 27314.6i −0.736807 0.897197i
\(976\) 0 0
\(977\) −34570.4 + 34570.4i −1.13204 + 1.13204i −0.142205 + 0.989837i \(0.545419\pi\)
−0.989837 + 0.142205i \(0.954581\pi\)
\(978\) 0 0
\(979\) −3144.78 −0.102664
\(980\) 0 0
\(981\) −3830.69 + 3830.69i −0.124673 + 0.124673i
\(982\) 0 0
\(983\) 23504.8 23504.8i 0.762650 0.762650i −0.214150 0.976801i \(-0.568698\pi\)
0.976801 + 0.214150i \(0.0686982\pi\)
\(984\) 0 0
\(985\) 15959.8i 0.516264i
\(986\) 0 0
\(987\) −17747.1 −0.572336
\(988\) 0 0
\(989\) −20136.2 −0.647416
\(990\) 0 0
\(991\) 52539.1i 1.68412i −0.539386 0.842058i \(-0.681344\pi\)
0.539386 0.842058i \(-0.318656\pi\)
\(992\) 0 0
\(993\) 10960.8 10960.8i 0.350284 0.350284i
\(994\) 0 0
\(995\) −30741.8 + 30741.8i −0.979477 + 0.979477i
\(996\) 0 0
\(997\) −59778.9 −1.89891 −0.949457 0.313898i \(-0.898365\pi\)
−0.949457 + 0.313898i \(0.898365\pi\)
\(998\) 0 0
\(999\) −3487.11 + 3487.11i −0.110438 + 0.110438i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.4.bc.d.31.14 yes 28
4.3 odd 2 624.4.bc.c.31.14 28
13.8 odd 4 624.4.bc.c.463.14 yes 28
52.47 even 4 inner 624.4.bc.d.463.14 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
624.4.bc.c.31.14 28 4.3 odd 2
624.4.bc.c.463.14 yes 28 13.8 odd 4
624.4.bc.d.31.14 yes 28 1.1 even 1 trivial
624.4.bc.d.463.14 yes 28 52.47 even 4 inner