gp: [N,k,chi] = [624,4,Mod(31,624)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(624, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 0, 0, 3]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("624.31");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [28,0,0,0,4,0,8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic q q q -expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 624 , [ χ ] ) S_{4}^{\mathrm{new}}(624, [\chi]) S 4 n e w ( 6 2 4 , [ χ ] ) :
T 5 28 − 4 T 5 27 + 8 T 5 26 + 72 T 5 25 + 250468 T 5 24 − 1122080 T 5 23 + ⋯ + 18 ⋯ 44 T_{5}^{28} - 4 T_{5}^{27} + 8 T_{5}^{26} + 72 T_{5}^{25} + 250468 T_{5}^{24} - 1122080 T_{5}^{23} + \cdots + 18\!\cdots\!44 T 5 2 8 − 4 T 5 2 7 + 8 T 5 2 6 + 7 2 T 5 2 5 + 2 5 0 4 6 8 T 5 2 4 − 1 1 2 2 0 8 0 T 5 2 3 + ⋯ + 1 8 ⋯ 4 4
T5^28 - 4*T5^27 + 8*T5^26 + 72*T5^25 + 250468*T5^24 - 1122080*T5^23 + 2487168*T5^22 + 64577408*T5^21 + 18321751296*T5^20 - 88146157312*T5^19 + 217235960832*T5^18 + 7992172908544*T5^17 + 485437533769216*T5^16 - 2001453236471808*T5^15 + 5709979968757760*T5^14 + 221073268893212672*T5^13 + 5385315353327448064*T5^12 - 13093513616719872000*T5^11 + 54310580022342352896*T5^10 + 1947543339399251853312*T5^9 + 25733052677901210107904*T5^8 + 1849890701368793235456*T5^7 + 184524974421272634064896*T5^6 + 4725492016296324212195328*T5^5 + 37187970121165055232835584*T5^4 + 112822383023315643166359552*T5^3 + 181532533723533056019529728*T5^2 + 82497310529395708089335808*T5 + 18745417432856747619385344
T 7 28 − 8 T 7 27 + 32 T 7 26 + 6464 T 7 25 + 2466704 T 7 24 − 15378944 T 7 23 + ⋯ + 39 ⋯ 64 T_{7}^{28} - 8 T_{7}^{27} + 32 T_{7}^{26} + 6464 T_{7}^{25} + 2466704 T_{7}^{24} - 15378944 T_{7}^{23} + \cdots + 39\!\cdots\!64 T 7 2 8 − 8 T 7 2 7 + 3 2 T 7 2 6 + 6 4 6 4 T 7 2 5 + 2 4 6 6 7 0 4 T 7 2 4 − 1 5 3 7 8 9 4 4 T 7 2 3 + ⋯ + 3 9 ⋯ 6 4
T7^28 - 8*T7^27 + 32*T7^26 + 6464*T7^25 + 2466704*T7^24 - 15378944*T7^23 + 64988672*T7^22 + 11721257984*T7^21 + 1658126633824*T7^20 - 7434757462272*T7^19 + 40132361124864*T7^18 + 6294199943872512*T7^17 + 263962253292573952*T7^16 + 352229925144236032*T7^15 + 5699636304082165760*T7^14 + 489196829847417946112*T7^13 + 15545258575214809846016*T7^12 + 76554987975537085732864*T7^11 + 290697613601163372732416*T7^10 + 8387240102843087683960832*T7^9 + 288055118744055579205844992*T7^8 + 1883766263015177817432784896*T7^7 + 4849094702183269340610035712*T7^6 - 33690824864403730619550400512*T7^5 + 440517232600206934125739769856*T7^4 + 2107762279018545848728990777344*T7^3 + 5954813098413010054105006080000*T7^2 - 68294120418596198279520505036800*T7 + 391623280753574162317720802033664