L(s) = 1 | + (1.92 − 4.82i)3-s − 18.6i·5-s + 4.79i·7-s + (−19.5 − 18.5i)9-s − 18.4·11-s − 13·13-s + (−89.9 − 35.9i)15-s − 42.4i·17-s + 58.4i·19-s + (23.1 + 9.23i)21-s − 20.6·23-s − 222.·25-s + (−127. + 58.6i)27-s + 65.8i·29-s − 129. i·31-s + ⋯ |
L(s) = 1 | + (0.370 − 0.928i)3-s − 1.66i·5-s + 0.258i·7-s + (−0.725 − 0.688i)9-s − 0.505·11-s − 0.277·13-s + (−1.54 − 0.618i)15-s − 0.605i·17-s + 0.705i·19-s + (0.240 + 0.0959i)21-s − 0.186·23-s − 1.78·25-s + (−0.908 + 0.417i)27-s + 0.421i·29-s − 0.748i·31-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)(−0.618−0.785i)Λ(4−s)
Λ(s)=(=(624s/2ΓC(s+3/2)L(s)(−0.618−0.785i)Λ(1−s)
Degree: |
2 |
Conductor: |
624
= 24⋅3⋅13
|
Sign: |
−0.618−0.785i
|
Analytic conductor: |
36.8171 |
Root analytic conductor: |
6.06771 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ624(287,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 624, ( :3/2), −0.618−0.785i)
|
Particular Values
L(2) |
≈ |
0.9016305200 |
L(21) |
≈ |
0.9016305200 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.92+4.82i)T |
| 13 | 1+13T |
good | 5 | 1+18.6iT−125T2 |
| 7 | 1−4.79iT−343T2 |
| 11 | 1+18.4T+1.33e3T2 |
| 17 | 1+42.4iT−4.91e3T2 |
| 19 | 1−58.4iT−6.85e3T2 |
| 23 | 1+20.6T+1.21e4T2 |
| 29 | 1−65.8iT−2.43e4T2 |
| 31 | 1+129.iT−2.97e4T2 |
| 37 | 1+280.T+5.06e4T2 |
| 41 | 1−49.8iT−6.89e4T2 |
| 43 | 1+336.iT−7.95e4T2 |
| 47 | 1−482.T+1.03e5T2 |
| 53 | 1−256.iT−1.48e5T2 |
| 59 | 1+96.1T+2.05e5T2 |
| 61 | 1+275.T+2.26e5T2 |
| 67 | 1−912.iT−3.00e5T2 |
| 71 | 1−842.T+3.57e5T2 |
| 73 | 1+851.T+3.89e5T2 |
| 79 | 1+305.iT−4.93e5T2 |
| 83 | 1−394.T+5.71e5T2 |
| 89 | 1+1.35e3iT−7.04e5T2 |
| 97 | 1−261.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.264373332141908730667928948275, −8.771053876962845925658829989565, −7.960831720387774169335902692398, −7.19590319017204658363999993188, −5.83099754869477433387687138390, −5.19756922026556717137233442521, −3.95972915843902528067601770078, −2.47264953233651532728917553068, −1.36002558899392762670704675039, −0.24119068026179436863371928621,
2.29725216455347700948704489997, 3.12892802222378269550616620052, 4.02340282563261573850654717209, 5.22733193060623562613784522440, 6.34293507908729015909822428809, 7.26613625094839999110783026361, 8.096879101250444998255460588080, 9.200695877800232147522541947602, 10.13684724437901491152706601960, 10.65399811953720297990789748261