L(s) = 1 | + (1.5 + 2.59i)3-s + 15.3·5-s + (1.63 − 2.82i)7-s + (−4.5 + 7.79i)9-s + (−24.6 − 42.7i)11-s + (−8.10 + 46.1i)13-s + (23.0 + 39.8i)15-s + (−53.6 + 92.8i)17-s + (−59.9 + 103. i)19-s + 9.80·21-s + (15.2 + 26.3i)23-s + 110.·25-s − 27·27-s + (86.5 + 149. i)29-s + 189.·31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + 1.37·5-s + (0.0882 − 0.152i)7-s + (−0.166 + 0.288i)9-s + (−0.676 − 1.17i)11-s + (−0.172 + 0.984i)13-s + (0.396 + 0.686i)15-s + (−0.764 + 1.32i)17-s + (−0.724 + 1.25i)19-s + 0.101·21-s + (0.137 + 0.239i)23-s + 0.886·25-s − 0.192·27-s + (0.554 + 0.960i)29-s + 1.09·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0942 - 0.995i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.0942 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.327506268\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.327506268\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.5 - 2.59i)T \) |
| 13 | \( 1 + (8.10 - 46.1i)T \) |
good | 5 | \( 1 - 15.3T + 125T^{2} \) |
| 7 | \( 1 + (-1.63 + 2.82i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (24.6 + 42.7i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 17 | \( 1 + (53.6 - 92.8i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (59.9 - 103. i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-15.2 - 26.3i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-86.5 - 149. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 - 189.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (-155. - 269. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (65.2 + 113. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (21.4 - 37.0i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + 336.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 673.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (83.2 - 144. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-268. + 464. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (233. + 405. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (360. - 624. i)T + (-1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 - 408.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 1.09e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.15e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + (683. + 1.18e3i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (559. - 969. i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41029735119839418695113896152, −9.662009468330108467508709885226, −8.690690594564922188174885667177, −8.154202135369727532309701295156, −6.54368026612706708342459600088, −5.99195759646267567917338731386, −4.94892576861295723098000931081, −3.82475573400228393341752659675, −2.55331493437110696052465700136, −1.51795067716779796728333925390,
0.61094149988249476526194285577, 2.35293768778400950626149670103, 2.52378132460520245529355317828, 4.60932640433738921532210191719, 5.38349497249315117780707349978, 6.47971892412206365843817733264, 7.19925912388504837367840658868, 8.245307177014464091164853418495, 9.230892038629014049169721176401, 9.884089950398394992790986458618