L(s) = 1 | + (1.5 + 2.59i)3-s + 15.3·5-s + (1.63 − 2.82i)7-s + (−4.5 + 7.79i)9-s + (−24.6 − 42.7i)11-s + (−8.10 + 46.1i)13-s + (23.0 + 39.8i)15-s + (−53.6 + 92.8i)17-s + (−59.9 + 103. i)19-s + 9.80·21-s + (15.2 + 26.3i)23-s + 110.·25-s − 27·27-s + (86.5 + 149. i)29-s + 189.·31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + 1.37·5-s + (0.0882 − 0.152i)7-s + (−0.166 + 0.288i)9-s + (−0.676 − 1.17i)11-s + (−0.172 + 0.984i)13-s + (0.396 + 0.686i)15-s + (−0.764 + 1.32i)17-s + (−0.724 + 1.25i)19-s + 0.101·21-s + (0.137 + 0.239i)23-s + 0.886·25-s − 0.192·27-s + (0.554 + 0.960i)29-s + 1.09·31-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)(−0.0942−0.995i)Λ(4−s)
Λ(s)=(=(624s/2ΓC(s+3/2)L(s)(−0.0942−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
624
= 24⋅3⋅13
|
Sign: |
−0.0942−0.995i
|
Analytic conductor: |
36.8171 |
Root analytic conductor: |
6.06771 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ624(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 624, ( :3/2), −0.0942−0.995i)
|
Particular Values
L(2) |
≈ |
2.327506268 |
L(21) |
≈ |
2.327506268 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.5−2.59i)T |
| 13 | 1+(8.10−46.1i)T |
good | 5 | 1−15.3T+125T2 |
| 7 | 1+(−1.63+2.82i)T+(−171.5−297.i)T2 |
| 11 | 1+(24.6+42.7i)T+(−665.5+1.15e3i)T2 |
| 17 | 1+(53.6−92.8i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(59.9−103.i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(−15.2−26.3i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(−86.5−149.i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1−189.T+2.97e4T2 |
| 37 | 1+(−155.−269.i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1+(65.2+113.i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(21.4−37.0i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+336.T+1.03e5T2 |
| 53 | 1−673.T+1.48e5T2 |
| 59 | 1+(83.2−144.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(−268.+464.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(233.+405.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+(360.−624.i)T+(−1.78e5−3.09e5i)T2 |
| 73 | 1−408.T+3.89e5T2 |
| 79 | 1−1.09e3T+4.93e5T2 |
| 83 | 1−1.15e3T+5.71e5T2 |
| 89 | 1+(683.+1.18e3i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1+(559.−969.i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.41029735119839418695113896152, −9.662009468330108467508709885226, −8.690690594564922188174885667177, −8.154202135369727532309701295156, −6.54368026612706708342459600088, −5.99195759646267567917338731386, −4.94892576861295723098000931081, −3.82475573400228393341752659675, −2.55331493437110696052465700136, −1.51795067716779796728333925390,
0.61094149988249476526194285577, 2.35293768778400950626149670103, 2.52378132460520245529355317828, 4.60932640433738921532210191719, 5.38349497249315117780707349978, 6.47971892412206365843817733264, 7.19925912388504837367840658868, 8.245307177014464091164853418495, 9.230892038629014049169721176401, 9.884089950398394992790986458618