Properties

Label 624.4.q.m
Level $624$
Weight $4$
Character orbit 624.q
Analytic conductor $36.817$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,4,Mod(289,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 120 x^{8} - 979 x^{7} + 14252 x^{6} - 68003 x^{5} + 352315 x^{4} - 602502 x^{3} + \cdots + 12873744 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 3 \beta_{2} + 3) q^{3} + ( - \beta_{8} - \beta_1 - 2) q^{5} + (\beta_{7} + \beta_{2}) q^{7} - 9 \beta_{2} q^{9} + (\beta_{5} - \beta_{3} + 9 \beta_{2} - 9) q^{11} + (\beta_{9} - \beta_{8} - \beta_{7} + \cdots - 1) q^{13}+ \cdots + ( - 9 \beta_{9} + 9 \beta_{6} + \cdots + 81) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 15 q^{3} - 22 q^{5} + 4 q^{7} - 45 q^{9} - 46 q^{11} - 31 q^{13} - 33 q^{15} - 11 q^{17} - 158 q^{19} + 24 q^{21} + 26 q^{23} + 340 q^{25} - 270 q^{27} - 125 q^{29} + 396 q^{31} + 138 q^{33} + 230 q^{35}+ \cdots + 828 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - x^{9} + 120 x^{8} - 979 x^{7} + 14252 x^{6} - 68003 x^{5} + 352315 x^{4} - 602502 x^{3} + \cdots + 12873744 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 22705040150959 \nu^{9} + \cdots - 22\!\cdots\!00 ) / 52\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 40025142237939 \nu^{9} - 229951117700615 \nu^{8} + \cdots - 42\!\cdots\!84 ) / 56\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 963657775984429 \nu^{9} + \cdots - 45\!\cdots\!20 ) / 84\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 277783668470921 \nu^{9} + \cdots + 64\!\cdots\!36 ) / 42\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 13\!\cdots\!19 \nu^{9} + \cdots - 23\!\cdots\!80 ) / 42\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 428509431163265 \nu^{9} - 701042128200067 \nu^{8} + \cdots - 80\!\cdots\!48 ) / 92\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 21\!\cdots\!85 \nu^{9} + \cdots + 13\!\cdots\!00 ) / 42\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 13\!\cdots\!41 \nu^{9} + \cdots - 14\!\cdots\!04 ) / 21\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 54\!\cdots\!49 \nu^{9} + \cdots - 12\!\cdots\!56 ) / 42\!\cdots\!80 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_{2} - \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{9} + 2\beta_{6} - 2\beta_{3} - 48\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 22\beta_{9} + 41\beta_{8} - 22\beta_{7} - 125\beta_{6} + 22\beta_{5} - 22\beta_{4} + 41\beta _1 + 1023 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -119\beta_{5} + 15\beta_{4} + 338\beta_{3} + 4964\beta_{2} - 55\beta _1 - 4964 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -4338\beta_{9} - 4201\beta_{8} + 2558\beta_{7} + 17457\beta_{6} - 17457\beta_{3} - 193395\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 15638 \beta_{9} + 10225 \beta_{8} - 4165 \beta_{7} - 51201 \beta_{6} + 15638 \beta_{5} - 4165 \beta_{4} + \cdots + 661687 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -690566\beta_{5} + 310606\beta_{4} + 2528873\beta_{3} + 30110771\beta_{2} - 561021\beta _1 - 30110771 ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -2209435\beta_{9} - 1591140\beta_{8} + 742465\beta_{7} + 7589745\beta_{6} - 7589745\beta_{3} - 94565381\beta_{2} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 103985970 \beta_{9} + 80137621 \beta_{8} - 41751750 \beta_{7} - 370168021 \beta_{6} + 103985970 \beta_{5} + \cdots + 4498166639 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(-\beta_{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
−1.19909 2.07689i
2.57048 + 4.45220i
−6.06267 10.5009i
3.45416 + 5.98279i
1.73712 + 3.00877i
−1.19909 + 2.07689i
2.57048 4.45220i
−6.06267 + 10.5009i
3.45416 5.98279i
1.73712 3.00877i
0 1.50000 + 2.59808i 0 −21.8246 0 2.84961 4.93567i 0 −4.50000 + 7.79423i 0
289.2 0 1.50000 + 2.59808i 0 −6.40898 0 −14.7066 + 25.4726i 0 −4.50000 + 7.79423i 0
289.3 0 1.50000 + 2.59808i 0 −3.53523 0 0.928779 1.60869i 0 −4.50000 + 7.79423i 0
289.4 0 1.50000 + 2.59808i 0 5.41254 0 11.2944 19.5625i 0 −4.50000 + 7.79423i 0
289.5 0 1.50000 + 2.59808i 0 15.3563 0 1.63381 2.82985i 0 −4.50000 + 7.79423i 0
529.1 0 1.50000 2.59808i 0 −21.8246 0 2.84961 + 4.93567i 0 −4.50000 7.79423i 0
529.2 0 1.50000 2.59808i 0 −6.40898 0 −14.7066 25.4726i 0 −4.50000 7.79423i 0
529.3 0 1.50000 2.59808i 0 −3.53523 0 0.928779 + 1.60869i 0 −4.50000 7.79423i 0
529.4 0 1.50000 2.59808i 0 5.41254 0 11.2944 + 19.5625i 0 −4.50000 7.79423i 0
529.5 0 1.50000 2.59808i 0 15.3563 0 1.63381 + 2.82985i 0 −4.50000 7.79423i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 289.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 624.4.q.m 10
4.b odd 2 1 312.4.q.d 10
13.c even 3 1 inner 624.4.q.m 10
52.j odd 6 1 312.4.q.d 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.4.q.d 10 4.b odd 2 1
312.4.q.d 10 52.j odd 6 1
624.4.q.m 10 1.a even 1 1 trivial
624.4.q.m 10 13.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(624, [\chi])\):

\( T_{5}^{5} + 11T_{5}^{4} - 337T_{5}^{3} - 1843T_{5}^{2} + 9652T_{5} + 41100 \) Copy content Toggle raw display
\( T_{7}^{10} - 4 T_{7}^{9} + 719 T_{7}^{8} - 11984 T_{7}^{7} + 547477 T_{7}^{6} - 5367218 T_{7}^{5} + \cdots + 528264256 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3 T + 9)^{5} \) Copy content Toggle raw display
$5$ \( (T^{5} + 11 T^{4} + \cdots + 41100)^{2} \) Copy content Toggle raw display
$7$ \( T^{10} + \cdots + 528264256 \) Copy content Toggle raw display
$11$ \( T^{10} + \cdots + 32799353693184 \) Copy content Toggle raw display
$13$ \( T^{10} + \cdots + 51\!\cdots\!57 \) Copy content Toggle raw display
$17$ \( T^{10} + \cdots + 37\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{10} + \cdots + 78\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{10} + \cdots + 14\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{10} + \cdots + 73\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( (T^{5} - 198 T^{4} + \cdots - 106542921664)^{2} \) Copy content Toggle raw display
$37$ \( T^{10} + \cdots + 92\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{10} + \cdots + 95\!\cdots\!96 \) Copy content Toggle raw display
$43$ \( T^{10} + \cdots + 12\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( (T^{5} - 166 T^{4} + \cdots - 485225223264)^{2} \) Copy content Toggle raw display
$53$ \( (T^{5} + \cdots - 2698227619776)^{2} \) Copy content Toggle raw display
$59$ \( T^{10} + \cdots + 17\!\cdots\!84 \) Copy content Toggle raw display
$61$ \( T^{10} + \cdots + 20\!\cdots\!25 \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots + 11\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( T^{10} + \cdots + 44\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{5} + \cdots - 107667757737387)^{2} \) Copy content Toggle raw display
$79$ \( (T^{5} + \cdots - 48889825273536)^{2} \) Copy content Toggle raw display
$83$ \( (T^{5} + \cdots - 48722741338752)^{2} \) Copy content Toggle raw display
$89$ \( T^{10} + \cdots + 30\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots + 13\!\cdots\!44 \) Copy content Toggle raw display
show more
show less