Properties

Label 624.4.q.m
Level 624624
Weight 44
Character orbit 624.q
Analytic conductor 36.81736.817
Analytic rank 00
Dimension 1010
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,4,Mod(289,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 624=24313 624 = 2^{4} \cdot 3 \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 624.q (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 36.817191843636.8171918436
Analytic rank: 00
Dimension: 1010
Relative dimension: 55 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+120x8979x7+14252x668003x5+352315x4602502x3++12873744 x^{10} - x^{9} + 120 x^{8} - 979 x^{7} + 14252 x^{6} - 68003 x^{5} + 352315 x^{4} - 602502 x^{3} + \cdots + 12873744 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 210 2^{10}
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β91,\beta_1,\ldots,\beta_{9} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3β2+3)q3+(β8β12)q5+(β7+β2)q79β2q9+(β5β3+9β29)q11+(β9β8β7+1)q13++(9β9+9β6++81)q99+O(q100) q + ( - 3 \beta_{2} + 3) q^{3} + ( - \beta_{8} - \beta_1 - 2) q^{5} + (\beta_{7} + \beta_{2}) q^{7} - 9 \beta_{2} q^{9} + (\beta_{5} - \beta_{3} + 9 \beta_{2} - 9) q^{11} + (\beta_{9} - \beta_{8} - \beta_{7} + \cdots - 1) q^{13}+ \cdots + ( - 9 \beta_{9} + 9 \beta_{6} + \cdots + 81) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+15q322q5+4q745q946q1131q1333q1511q17158q19+24q21+26q23+340q25270q27125q29+396q31+138q33+230q35++828q99+O(q100) 10 q + 15 q^{3} - 22 q^{5} + 4 q^{7} - 45 q^{9} - 46 q^{11} - 31 q^{13} - 33 q^{15} - 11 q^{17} - 158 q^{19} + 24 q^{21} + 26 q^{23} + 340 q^{25} - 270 q^{27} - 125 q^{29} + 396 q^{31} + 138 q^{33} + 230 q^{35}+ \cdots + 828 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x10x9+120x8979x7+14252x668003x5+352315x4602502x3++12873744 x^{10} - x^{9} + 120 x^{8} - 979 x^{7} + 14252 x^{6} - 68003 x^{5} + 352315 x^{4} - 602502 x^{3} + \cdots + 12873744 : Copy content Toggle raw display

β1\beta_{1}== (22705040150959ν9+22 ⁣ ⁣00)/52 ⁣ ⁣10 ( - 22705040150959 \nu^{9} + \cdots - 22\!\cdots\!00 ) / 52\!\cdots\!10 Copy content Toggle raw display
β2\beta_{2}== (40025142237939ν9229951117700615ν8+42 ⁣ ⁣84)/56 ⁣ ⁣04 ( - 40025142237939 \nu^{9} - 229951117700615 \nu^{8} + \cdots - 42\!\cdots\!84 ) / 56\!\cdots\!04 Copy content Toggle raw display
β3\beta_{3}== (963657775984429ν9+45 ⁣ ⁣20)/84 ⁣ ⁣60 ( - 963657775984429 \nu^{9} + \cdots - 45\!\cdots\!20 ) / 84\!\cdots\!60 Copy content Toggle raw display
β4\beta_{4}== (277783668470921ν9++64 ⁣ ⁣36)/42 ⁣ ⁣28 ( 277783668470921 \nu^{9} + \cdots + 64\!\cdots\!36 ) / 42\!\cdots\!28 Copy content Toggle raw display
β5\beta_{5}== (13 ⁣ ⁣19ν9+23 ⁣ ⁣80)/42 ⁣ ⁣80 ( - 13\!\cdots\!19 \nu^{9} + \cdots - 23\!\cdots\!80 ) / 42\!\cdots\!80 Copy content Toggle raw display
β6\beta_{6}== (428509431163265ν9701042128200067ν8+80 ⁣ ⁣48)/92 ⁣ ⁣80 ( 428509431163265 \nu^{9} - 701042128200067 \nu^{8} + \cdots - 80\!\cdots\!48 ) / 92\!\cdots\!80 Copy content Toggle raw display
β7\beta_{7}== (21 ⁣ ⁣85ν9++13 ⁣ ⁣00)/42 ⁣ ⁣28 ( - 21\!\cdots\!85 \nu^{9} + \cdots + 13\!\cdots\!00 ) / 42\!\cdots\!28 Copy content Toggle raw display
β8\beta_{8}== (13 ⁣ ⁣41ν9+14 ⁣ ⁣04)/21 ⁣ ⁣40 ( 13\!\cdots\!41 \nu^{9} + \cdots - 14\!\cdots\!04 ) / 21\!\cdots\!40 Copy content Toggle raw display
β9\beta_{9}== (54 ⁣ ⁣49ν9+12 ⁣ ⁣56)/42 ⁣ ⁣80 ( 54\!\cdots\!49 \nu^{9} + \cdots - 12\!\cdots\!56 ) / 42\!\cdots\!80 Copy content Toggle raw display
ν\nu== (β3β2β1+1)/4 ( \beta_{3} - \beta_{2} - \beta _1 + 1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== β9+2β62β348β2 -\beta_{9} + 2\beta_{6} - 2\beta_{3} - 48\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== (22β9+41β822β7125β6+22β522β4+41β1+1023)/4 ( 22\beta_{9} + 41\beta_{8} - 22\beta_{7} - 125\beta_{6} + 22\beta_{5} - 22\beta_{4} + 41\beta _1 + 1023 ) / 4 Copy content Toggle raw display
ν4\nu^{4}== 119β5+15β4+338β3+4964β255β14964 -119\beta_{5} + 15\beta_{4} + 338\beta_{3} + 4964\beta_{2} - 55\beta _1 - 4964 Copy content Toggle raw display
ν5\nu^{5}== (4338β94201β8+2558β7+17457β617457β3193395β2)/4 ( -4338\beta_{9} - 4201\beta_{8} + 2558\beta_{7} + 17457\beta_{6} - 17457\beta_{3} - 193395\beta_{2} ) / 4 Copy content Toggle raw display
ν6\nu^{6}== 15638β9+10225β84165β751201β6+15638β54165β4++661687 15638 \beta_{9} + 10225 \beta_{8} - 4165 \beta_{7} - 51201 \beta_{6} + 15638 \beta_{5} - 4165 \beta_{4} + \cdots + 661687 Copy content Toggle raw display
ν7\nu^{7}== (690566β5+310606β4+2528873β3+30110771β2561021β130110771)/4 ( -690566\beta_{5} + 310606\beta_{4} + 2528873\beta_{3} + 30110771\beta_{2} - 561021\beta _1 - 30110771 ) / 4 Copy content Toggle raw display
ν8\nu^{8}== 2209435β91591140β8+742465β7+7589745β67589745β394565381β2 -2209435\beta_{9} - 1591140\beta_{8} + 742465\beta_{7} + 7589745\beta_{6} - 7589745\beta_{3} - 94565381\beta_{2} Copy content Toggle raw display
ν9\nu^{9}== (103985970β9+80137621β841751750β7370168021β6+103985970β5++4498166639)/4 ( 103985970 \beta_{9} + 80137621 \beta_{8} - 41751750 \beta_{7} - 370168021 \beta_{6} + 103985970 \beta_{5} + \cdots + 4498166639 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/624Z)×\left(\mathbb{Z}/624\mathbb{Z}\right)^\times.

nn 7979 145145 209209 469469
χ(n)\chi(n) 11 β2-\beta_{2} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
289.1
−1.19909 2.07689i
2.57048 + 4.45220i
−6.06267 10.5009i
3.45416 + 5.98279i
1.73712 + 3.00877i
−1.19909 + 2.07689i
2.57048 4.45220i
−6.06267 + 10.5009i
3.45416 5.98279i
1.73712 3.00877i
0 1.50000 + 2.59808i 0 −21.8246 0 2.84961 4.93567i 0 −4.50000 + 7.79423i 0
289.2 0 1.50000 + 2.59808i 0 −6.40898 0 −14.7066 + 25.4726i 0 −4.50000 + 7.79423i 0
289.3 0 1.50000 + 2.59808i 0 −3.53523 0 0.928779 1.60869i 0 −4.50000 + 7.79423i 0
289.4 0 1.50000 + 2.59808i 0 5.41254 0 11.2944 19.5625i 0 −4.50000 + 7.79423i 0
289.5 0 1.50000 + 2.59808i 0 15.3563 0 1.63381 2.82985i 0 −4.50000 + 7.79423i 0
529.1 0 1.50000 2.59808i 0 −21.8246 0 2.84961 + 4.93567i 0 −4.50000 7.79423i 0
529.2 0 1.50000 2.59808i 0 −6.40898 0 −14.7066 25.4726i 0 −4.50000 7.79423i 0
529.3 0 1.50000 2.59808i 0 −3.53523 0 0.928779 + 1.60869i 0 −4.50000 7.79423i 0
529.4 0 1.50000 2.59808i 0 5.41254 0 11.2944 + 19.5625i 0 −4.50000 7.79423i 0
529.5 0 1.50000 2.59808i 0 15.3563 0 1.63381 + 2.82985i 0 −4.50000 7.79423i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 289.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 624.4.q.m 10
4.b odd 2 1 312.4.q.d 10
13.c even 3 1 inner 624.4.q.m 10
52.j odd 6 1 312.4.q.d 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.4.q.d 10 4.b odd 2 1
312.4.q.d 10 52.j odd 6 1
624.4.q.m 10 1.a even 1 1 trivial
624.4.q.m 10 13.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(624,[χ])S_{4}^{\mathrm{new}}(624, [\chi]):

T55+11T54337T531843T52+9652T5+41100 T_{5}^{5} + 11T_{5}^{4} - 337T_{5}^{3} - 1843T_{5}^{2} + 9652T_{5} + 41100 Copy content Toggle raw display
T7104T79+719T7811984T77+547477T765367218T75++528264256 T_{7}^{10} - 4 T_{7}^{9} + 719 T_{7}^{8} - 11984 T_{7}^{7} + 547477 T_{7}^{6} - 5367218 T_{7}^{5} + \cdots + 528264256 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T10 T^{10} Copy content Toggle raw display
33 (T23T+9)5 (T^{2} - 3 T + 9)^{5} Copy content Toggle raw display
55 (T5+11T4++41100)2 (T^{5} + 11 T^{4} + \cdots + 41100)^{2} Copy content Toggle raw display
77 T10++528264256 T^{10} + \cdots + 528264256 Copy content Toggle raw display
1111 T10++32799353693184 T^{10} + \cdots + 32799353693184 Copy content Toggle raw display
1313 T10++51 ⁣ ⁣57 T^{10} + \cdots + 51\!\cdots\!57 Copy content Toggle raw display
1717 T10++37 ⁣ ⁣76 T^{10} + \cdots + 37\!\cdots\!76 Copy content Toggle raw display
1919 T10++78 ⁣ ⁣00 T^{10} + \cdots + 78\!\cdots\!00 Copy content Toggle raw display
2323 T10++14 ⁣ ⁣36 T^{10} + \cdots + 14\!\cdots\!36 Copy content Toggle raw display
2929 T10++73 ⁣ ⁣00 T^{10} + \cdots + 73\!\cdots\!00 Copy content Toggle raw display
3131 (T5198T4+106542921664)2 (T^{5} - 198 T^{4} + \cdots - 106542921664)^{2} Copy content Toggle raw display
3737 T10++92 ⁣ ⁣76 T^{10} + \cdots + 92\!\cdots\!76 Copy content Toggle raw display
4141 T10++95 ⁣ ⁣96 T^{10} + \cdots + 95\!\cdots\!96 Copy content Toggle raw display
4343 T10++12 ⁣ ⁣16 T^{10} + \cdots + 12\!\cdots\!16 Copy content Toggle raw display
4747 (T5166T4+485225223264)2 (T^{5} - 166 T^{4} + \cdots - 485225223264)^{2} Copy content Toggle raw display
5353 (T5+2698227619776)2 (T^{5} + \cdots - 2698227619776)^{2} Copy content Toggle raw display
5959 T10++17 ⁣ ⁣84 T^{10} + \cdots + 17\!\cdots\!84 Copy content Toggle raw display
6161 T10++20 ⁣ ⁣25 T^{10} + \cdots + 20\!\cdots\!25 Copy content Toggle raw display
6767 T10++11 ⁣ ⁣96 T^{10} + \cdots + 11\!\cdots\!96 Copy content Toggle raw display
7171 T10++44 ⁣ ⁣00 T^{10} + \cdots + 44\!\cdots\!00 Copy content Toggle raw display
7373 (T5+107667757737387)2 (T^{5} + \cdots - 107667757737387)^{2} Copy content Toggle raw display
7979 (T5+48889825273536)2 (T^{5} + \cdots - 48889825273536)^{2} Copy content Toggle raw display
8383 (T5+48722741338752)2 (T^{5} + \cdots - 48722741338752)^{2} Copy content Toggle raw display
8989 T10++30 ⁣ ⁣00 T^{10} + \cdots + 30\!\cdots\!00 Copy content Toggle raw display
9797 T10++13 ⁣ ⁣44 T^{10} + \cdots + 13\!\cdots\!44 Copy content Toggle raw display
show more
show less