[N,k,chi] = [624,4,Mod(289,624)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(624, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("624.289");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of χ \chi χ on generators for ( Z / 624 Z ) × \left(\mathbb{Z}/624\mathbb{Z}\right)^\times ( Z / 6 2 4 Z ) × .
n n n
79 79 7 9
145 145 1 4 5
209 209 2 0 9
469 469 4 6 9
χ ( n ) \chi(n) χ ( n )
1 1 1
− β 2 -\beta_{2} − β 2
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 624 , [ χ ] ) S_{4}^{\mathrm{new}}(624, [\chi]) S 4 n e w ( 6 2 4 , [ χ ] ) :
T 5 5 + 11 T 5 4 − 337 T 5 3 − 1843 T 5 2 + 9652 T 5 + 41100 T_{5}^{5} + 11T_{5}^{4} - 337T_{5}^{3} - 1843T_{5}^{2} + 9652T_{5} + 41100 T 5 5 + 1 1 T 5 4 − 3 3 7 T 5 3 − 1 8 4 3 T 5 2 + 9 6 5 2 T 5 + 4 1 1 0 0
T5^5 + 11*T5^4 - 337*T5^3 - 1843*T5^2 + 9652*T5 + 41100
T 7 10 − 4 T 7 9 + 719 T 7 8 − 11984 T 7 7 + 547477 T 7 6 − 5367218 T 7 5 + ⋯ + 528264256 T_{7}^{10} - 4 T_{7}^{9} + 719 T_{7}^{8} - 11984 T_{7}^{7} + 547477 T_{7}^{6} - 5367218 T_{7}^{5} + \cdots + 528264256 T 7 1 0 − 4 T 7 9 + 7 1 9 T 7 8 − 1 1 9 8 4 T 7 7 + 5 4 7 4 7 7 T 7 6 − 5 3 6 7 2 1 8 T 7 5 + ⋯ + 5 2 8 2 6 4 2 5 6
T7^10 - 4*T7^9 + 719*T7^8 - 11984*T7^7 + 547477*T7^6 - 5367218*T7^5 + 38178112*T7^4 - 142839544*T7^3 + 390517344*T7^2 - 544169184*T7 + 528264256
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 10 T^{10} T 1 0
T^10
3 3 3
( T 2 − 3 T + 9 ) 5 (T^{2} - 3 T + 9)^{5} ( T 2 − 3 T + 9 ) 5
(T^2 - 3*T + 9)^5
5 5 5
( T 5 + 11 T 4 + ⋯ + 41100 ) 2 (T^{5} + 11 T^{4} + \cdots + 41100)^{2} ( T 5 + 1 1 T 4 + ⋯ + 4 1 1 0 0 ) 2
(T^5 + 11*T^4 - 337*T^3 - 1843*T^2 + 9652*T + 41100)^2
7 7 7
T 10 + ⋯ + 528264256 T^{10} + \cdots + 528264256 T 1 0 + ⋯ + 5 2 8 2 6 4 2 5 6
T^10 - 4*T^9 + 719*T^8 - 11984*T^7 + 547477*T^6 - 5367218*T^5 + 38178112*T^4 - 142839544*T^3 + 390517344*T^2 - 544169184*T + 528264256
11 11 1 1
T 10 + ⋯ + 32799353693184 T^{10} + \cdots + 32799353693184 T 1 0 + ⋯ + 3 2 7 9 9 3 5 3 6 9 3 1 8 4
T^10 + 46*T^9 + 4116*T^8 + 77184*T^7 + 7482928*T^6 + 137347104*T^5 + 7708969152*T^4 - 11630963968*T^3 + 651176631040*T^2 + 2338386405888*T + 32799353693184
13 13 1 3
T 10 + ⋯ + 51 ⋯ 57 T^{10} + \cdots + 51\!\cdots\!57 T 1 0 + ⋯ + 5 1 ⋯ 5 7
T^10 + 31*T^9 + 5355*T^8 + 258674*T^7 + 15125669*T^6 + 880234641*T^5 + 33231094793*T^4 + 1248569991266*T^3 + 56787094142415*T^2 + 722240638796911*T + 51185893014090757
17 17 1 7
T 10 + ⋯ + 37 ⋯ 76 T^{10} + \cdots + 37\!\cdots\!76 T 1 0 + ⋯ + 3 7 ⋯ 7 6
T^10 + 11*T^9 + 15962*T^8 - 196093*T^7 + 191821994*T^6 - 2082263569*T^5 + 941386610773*T^4 - 18725156490156*T^3 + 3487105209524832*T^2 - 36067902504929856*T + 373773981198571776
19 19 1 9
T 10 + ⋯ + 78 ⋯ 00 T^{10} + \cdots + 78\!\cdots\!00 T 1 0 + ⋯ + 7 8 ⋯ 0 0
T^10 + 158*T^9 + 24656*T^8 + 1520008*T^7 + 145709152*T^6 + 8777602336*T^5 + 594390214720*T^4 + 21784699564544*T^3 + 657604630262784*T^2 + 8205132763176960*T + 78005183123046400
23 23 2 3
T 10 + ⋯ + 14 ⋯ 36 T^{10} + \cdots + 14\!\cdots\!36 T 1 0 + ⋯ + 1 4 ⋯ 3 6
T^10 - 26*T^9 + 16980*T^8 + 58496*T^7 + 221939504*T^6 - 1643583840*T^5 + 795230469824*T^4 - 30035825545984*T^3 + 2583070856974080*T^2 - 58046270772164096*T + 1424683480884315136
29 29 2 9
T 10 + ⋯ + 73 ⋯ 00 T^{10} + \cdots + 73\!\cdots\!00 T 1 0 + ⋯ + 7 3 ⋯ 0 0
T^10 + 125*T^9 + 59674*T^8 + 3481085*T^7 + 2107419982*T^6 + 126376297505*T^5 + 34188221506681*T^4 + 613090353668660*T^3 + 277420165538717236*T^2 + 10688100744491781840*T + 733665039823353459600
31 31 3 1
( T 5 − 198 T 4 + ⋯ − 106542921664 ) 2 (T^{5} - 198 T^{4} + \cdots - 106542921664)^{2} ( T 5 − 1 9 8 T 4 + ⋯ − 1 0 6 5 4 2 9 2 1 6 6 4 ) 2
(T^5 - 198*T^4 - 52711*T^3 + 10406284*T^2 + 541147152*T - 106542921664)^2
37 37 3 7
T 10 + ⋯ + 92 ⋯ 76 T^{10} + \cdots + 92\!\cdots\!76 T 1 0 + ⋯ + 9 2 ⋯ 7 6
T^10 - 261*T^9 + 190318*T^8 - 42612961*T^7 + 24950195338*T^6 - 5010150910357*T^5 + 1272425556502357*T^4 - 85268526046091056*T^3 + 11409380620191041836*T^2 + 89661156992953888800*T + 92373285472979428700176
41 41 4 1
T 10 + ⋯ + 95 ⋯ 96 T^{10} + \cdots + 95\!\cdots\!96 T 1 0 + ⋯ + 9 5 ⋯ 9 6
T^10 + 151*T^9 + 197910*T^8 + 98861043*T^7 + 47639138854*T^6 + 12931580087967*T^5 + 2655773403406689*T^4 + 362667595842820424*T^3 + 37129305495533536048*T^2 + 2321885142633242289792*T + 95444245599783262730496
43 43 4 3
T 10 + ⋯ + 12 ⋯ 16 T^{10} + \cdots + 12\!\cdots\!16 T 1 0 + ⋯ + 1 2 ⋯ 1 6
T^10 + 264*T^9 + 204911*T^8 + 32077492*T^7 + 25760636701*T^6 + 3920324529122*T^5 + 1316897640651952*T^4 - 19012774974564008*T^3 + 6010936611223003040*T^2 + 167030325994761639648*T + 12934440817116588145216
47 47 4 7
( T 5 − 166 T 4 + ⋯ − 485225223264 ) 2 (T^{5} - 166 T^{4} + \cdots - 485225223264)^{2} ( T 5 − 1 6 6 T 4 + ⋯ − 4 8 5 2 2 5 2 2 3 2 6 4 ) 2
(T^5 - 166*T^4 - 187984*T^3 + 21309520*T^2 + 7858733040*T - 485225223264)^2
53 53 5 3
( T 5 + ⋯ − 2698227619776 ) 2 (T^{5} + \cdots - 2698227619776)^{2} ( T 5 + ⋯ − 2 6 9 8 2 2 7 6 1 9 7 7 6 ) 2
(T^5 - 589*T^4 - 371877*T^3 + 155969729*T^2 + 41809791192*T - 2698227619776)^2
59 59 5 9
T 10 + ⋯ + 17 ⋯ 84 T^{10} + \cdots + 17\!\cdots\!84 T 1 0 + ⋯ + 1 7 ⋯ 8 4
T^10 - 72*T^9 + 364868*T^8 + 67680032*T^7 + 97415521168*T^6 + 16071298582016*T^5 + 11690231891444224*T^4 + 2364845353597636608*T^3 + 1014532195061152235520*T^2 + 127042850713453235601408*T + 17403787108171374437597184
61 61 6 1
T 10 + ⋯ + 20 ⋯ 25 T^{10} + \cdots + 20\!\cdots\!25 T 1 0 + ⋯ + 2 0 ⋯ 2 5
T^10 + 157*T^9 + 1086531*T^8 + 253472722*T^7 + 933672954389*T^6 + 197201164340927*T^5 + 277965460314970381*T^4 + 48650293592592662082*T^3 + 61014631805937384491371*T^2 + 10291116674153576659527885*T + 2057008578829461524195559225
67 67 6 7
T 10 + ⋯ + 11 ⋯ 96 T^{10} + \cdots + 11\!\cdots\!96 T 1 0 + ⋯ + 1 1 ⋯ 9 6
T^10 + 1120*T^9 + 871143*T^8 + 385281484*T^7 + 131383537181*T^6 + 27775624868690*T^5 + 5182790183550448*T^4 + 624020887097474328*T^3 + 106797559564779578272*T^2 + 9808360806893139282912*T + 1156965707525116781906496
71 71 7 1
T 10 + ⋯ + 44 ⋯ 00 T^{10} + \cdots + 44\!\cdots\!00 T 1 0 + ⋯ + 4 4 ⋯ 0 0
T^10 + 898*T^9 + 1254708*T^8 + 844560448*T^7 + 914097477232*T^6 + 552512984521056*T^5 + 322066820693693376*T^4 + 93616951054109195520*T^3 + 22144820606530662433536*T^2 + 322250671865884626777600*T + 4427086282282241516160000
73 73 7 3
( T 5 + ⋯ − 107667757737387 ) 2 (T^{5} + \cdots - 107667757737387)^{2} ( T 5 + ⋯ − 1 0 7 6 6 7 7 5 7 7 3 7 3 8 7 ) 2
(T^5 - 235*T^4 - 1465762*T^3 + 227012374*T^2 + 403548940065*T - 107667757737387)^2
79 79 7 9
( T 5 + ⋯ − 48889825273536 ) 2 (T^{5} + \cdots - 48889825273536)^{2} ( T 5 + ⋯ − 4 8 8 8 9 8 2 5 2 7 3 5 3 6 ) 2
(T^5 - 74*T^4 - 1314351*T^3 - 19749316*T^2 + 299506426544*T - 48889825273536)^2
83 83 8 3
( T 5 + ⋯ − 48722741338752 ) 2 (T^{5} + \cdots - 48722741338752)^{2} ( T 5 + ⋯ − 4 8 7 2 2 7 4 1 3 3 8 7 5 2 ) 2
(T^5 - 1018*T^4 - 1045412*T^3 + 745044776*T^2 + 366167229792*T - 48722741338752)^2
89 89 8 9
T 10 + ⋯ + 30 ⋯ 00 T^{10} + \cdots + 30\!\cdots\!00 T 1 0 + ⋯ + 3 0 ⋯ 0 0
T^10 + 170*T^9 + 3180976*T^8 - 506395048*T^7 + 7530213063616*T^6 - 1325509189010464*T^5 + 7684072668842301376*T^4 - 3523292780793446874880*T^3 + 5789708119710213515008000*T^2 - 1332177379885529541192192000*T + 306095262694052883801384960000
97 97 9 7
T 10 + ⋯ + 13 ⋯ 44 T^{10} + \cdots + 13\!\cdots\!44 T 1 0 + ⋯ + 1 3 ⋯ 4 4
T^10 - 2620*T^9 + 7225639*T^8 - 7478595792*T^7 + 12267711589453*T^6 - 8432839557479422*T^5 + 14348055594809221768*T^4 - 5462713004178531430296*T^3 + 6034028824063599479823712*T^2 + 1259916331214034087103386656*T + 1310907333543397169203215252544
show more
show less