Properties

Label 2-624-1.1-c5-0-16
Degree $2$
Conductor $624$
Sign $1$
Analytic cond. $100.079$
Root an. cond. $10.0039$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s + 76·5-s − 100·7-s + 81·9-s + 106·11-s − 169·13-s − 684·15-s + 234·17-s + 276·19-s + 900·21-s − 2.54e3·23-s + 2.65e3·25-s − 729·27-s + 8.26e3·29-s + 608·31-s − 954·33-s − 7.60e3·35-s − 2.01e3·37-s + 1.52e3·39-s + 8.84e3·41-s + 1.76e4·43-s + 6.15e3·45-s − 1.87e4·47-s − 6.80e3·49-s − 2.10e3·51-s − 2.69e4·53-s + 8.05e3·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.35·5-s − 0.771·7-s + 1/3·9-s + 0.264·11-s − 0.277·13-s − 0.784·15-s + 0.196·17-s + 0.175·19-s + 0.445·21-s − 1.00·23-s + 0.848·25-s − 0.192·27-s + 1.82·29-s + 0.113·31-s − 0.152·33-s − 1.04·35-s − 0.241·37-s + 0.160·39-s + 0.821·41-s + 1.45·43-s + 0.453·45-s − 1.23·47-s − 0.405·49-s − 0.113·51-s − 1.31·53-s + 0.359·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(624\)    =    \(2^{4} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(100.079\)
Root analytic conductor: \(10.0039\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 624,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.071068541\)
\(L(\frac12)\) \(\approx\) \(2.071068541\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p^{2} T \)
13 \( 1 + p^{2} T \)
good5 \( 1 - 76 T + p^{5} T^{2} \)
7 \( 1 + 100 T + p^{5} T^{2} \)
11 \( 1 - 106 T + p^{5} T^{2} \)
17 \( 1 - 234 T + p^{5} T^{2} \)
19 \( 1 - 276 T + p^{5} T^{2} \)
23 \( 1 + 2548 T + p^{5} T^{2} \)
29 \( 1 - 8266 T + p^{5} T^{2} \)
31 \( 1 - 608 T + p^{5} T^{2} \)
37 \( 1 + 2010 T + p^{5} T^{2} \)
41 \( 1 - 8844 T + p^{5} T^{2} \)
43 \( 1 - 17636 T + p^{5} T^{2} \)
47 \( 1 + 18770 T + p^{5} T^{2} \)
53 \( 1 + 26970 T + p^{5} T^{2} \)
59 \( 1 - 41966 T + p^{5} T^{2} \)
61 \( 1 - 778 T + p^{5} T^{2} \)
67 \( 1 - 12632 T + p^{5} T^{2} \)
71 \( 1 + 40466 T + p^{5} T^{2} \)
73 \( 1 - 54302 T + p^{5} T^{2} \)
79 \( 1 - 44656 T + p^{5} T^{2} \)
83 \( 1 + 69918 T + p^{5} T^{2} \)
89 \( 1 + 44520 T + p^{5} T^{2} \)
97 \( 1 + 86026 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.871667909191998464250065004736, −9.308549862898110863814994841516, −8.099945882991428801004139340040, −6.81166258214305385414927266134, −6.21464578689606795192554021999, −5.49462800225665636351914547425, −4.40562519457017763375934548505, −3.01426348550849408038430859872, −1.91501641248954210564369766840, −0.71541225848001547287852013028, 0.71541225848001547287852013028, 1.91501641248954210564369766840, 3.01426348550849408038430859872, 4.40562519457017763375934548505, 5.49462800225665636351914547425, 6.21464578689606795192554021999, 6.81166258214305385414927266134, 8.099945882991428801004139340040, 9.308549862898110863814994841516, 9.871667909191998464250065004736

Graph of the $Z$-function along the critical line