L(s) = 1 | − 9·3-s + 76·5-s − 100·7-s + 81·9-s + 106·11-s − 169·13-s − 684·15-s + 234·17-s + 276·19-s + 900·21-s − 2.54e3·23-s + 2.65e3·25-s − 729·27-s + 8.26e3·29-s + 608·31-s − 954·33-s − 7.60e3·35-s − 2.01e3·37-s + 1.52e3·39-s + 8.84e3·41-s + 1.76e4·43-s + 6.15e3·45-s − 1.87e4·47-s − 6.80e3·49-s − 2.10e3·51-s − 2.69e4·53-s + 8.05e3·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.35·5-s − 0.771·7-s + 1/3·9-s + 0.264·11-s − 0.277·13-s − 0.784·15-s + 0.196·17-s + 0.175·19-s + 0.445·21-s − 1.00·23-s + 0.848·25-s − 0.192·27-s + 1.82·29-s + 0.113·31-s − 0.152·33-s − 1.04·35-s − 0.241·37-s + 0.160·39-s + 0.821·41-s + 1.45·43-s + 0.453·45-s − 1.23·47-s − 0.405·49-s − 0.113·51-s − 1.31·53-s + 0.359·55-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(624s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
2.071068541 |
L(21) |
≈ |
2.071068541 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+p2T |
| 13 | 1+p2T |
good | 5 | 1−76T+p5T2 |
| 7 | 1+100T+p5T2 |
| 11 | 1−106T+p5T2 |
| 17 | 1−234T+p5T2 |
| 19 | 1−276T+p5T2 |
| 23 | 1+2548T+p5T2 |
| 29 | 1−8266T+p5T2 |
| 31 | 1−608T+p5T2 |
| 37 | 1+2010T+p5T2 |
| 41 | 1−8844T+p5T2 |
| 43 | 1−17636T+p5T2 |
| 47 | 1+18770T+p5T2 |
| 53 | 1+26970T+p5T2 |
| 59 | 1−41966T+p5T2 |
| 61 | 1−778T+p5T2 |
| 67 | 1−12632T+p5T2 |
| 71 | 1+40466T+p5T2 |
| 73 | 1−54302T+p5T2 |
| 79 | 1−44656T+p5T2 |
| 83 | 1+69918T+p5T2 |
| 89 | 1+44520T+p5T2 |
| 97 | 1+86026T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.871667909191998464250065004736, −9.308549862898110863814994841516, −8.099945882991428801004139340040, −6.81166258214305385414927266134, −6.21464578689606795192554021999, −5.49462800225665636351914547425, −4.40562519457017763375934548505, −3.01426348550849408038430859872, −1.91501641248954210564369766840, −0.71541225848001547287852013028,
0.71541225848001547287852013028, 1.91501641248954210564369766840, 3.01426348550849408038430859872, 4.40562519457017763375934548505, 5.49462800225665636351914547425, 6.21464578689606795192554021999, 6.81166258214305385414927266134, 8.099945882991428801004139340040, 9.308549862898110863814994841516, 9.871667909191998464250065004736