Properties

Label 624.6.a.d
Level 624624
Weight 66
Character orbit 624.a
Self dual yes
Analytic conductor 100.080100.080
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,6,Mod(1,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 624=24313 624 = 2^{4} \cdot 3 \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 100.079503563100.079503563
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 78)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q9q3+76q5100q7+81q9+106q11169q13684q15+234q17+276q19+900q212548q23+2651q25729q27+8266q29+608q31954q33++8586q99+O(q100) q - 9 q^{3} + 76 q^{5} - 100 q^{7} + 81 q^{9} + 106 q^{11} - 169 q^{13} - 684 q^{15} + 234 q^{17} + 276 q^{19} + 900 q^{21} - 2548 q^{23} + 2651 q^{25} - 729 q^{27} + 8266 q^{29} + 608 q^{31} - 954 q^{33}+ \cdots + 8586 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −9.00000 0 76.0000 0 −100.000 0 81.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 624.6.a.d 1
4.b odd 2 1 78.6.a.c 1
12.b even 2 1 234.6.a.d 1
52.b odd 2 1 1014.6.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.6.a.c 1 4.b odd 2 1
234.6.a.d 1 12.b even 2 1
624.6.a.d 1 1.a even 1 1 trivial
1014.6.a.f 1 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(Γ0(624))S_{6}^{\mathrm{new}}(\Gamma_0(624)):

T576 T_{5} - 76 Copy content Toggle raw display
T7+100 T_{7} + 100 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+9 T + 9 Copy content Toggle raw display
55 T76 T - 76 Copy content Toggle raw display
77 T+100 T + 100 Copy content Toggle raw display
1111 T106 T - 106 Copy content Toggle raw display
1313 T+169 T + 169 Copy content Toggle raw display
1717 T234 T - 234 Copy content Toggle raw display
1919 T276 T - 276 Copy content Toggle raw display
2323 T+2548 T + 2548 Copy content Toggle raw display
2929 T8266 T - 8266 Copy content Toggle raw display
3131 T608 T - 608 Copy content Toggle raw display
3737 T+2010 T + 2010 Copy content Toggle raw display
4141 T8844 T - 8844 Copy content Toggle raw display
4343 T17636 T - 17636 Copy content Toggle raw display
4747 T+18770 T + 18770 Copy content Toggle raw display
5353 T+26970 T + 26970 Copy content Toggle raw display
5959 T41966 T - 41966 Copy content Toggle raw display
6161 T778 T - 778 Copy content Toggle raw display
6767 T12632 T - 12632 Copy content Toggle raw display
7171 T+40466 T + 40466 Copy content Toggle raw display
7373 T54302 T - 54302 Copy content Toggle raw display
7979 T44656 T - 44656 Copy content Toggle raw display
8383 T+69918 T + 69918 Copy content Toggle raw display
8989 T+44520 T + 44520 Copy content Toggle raw display
9797 T+86026 T + 86026 Copy content Toggle raw display
show more
show less