L(s) = 1 | + (−0.713 − 2.19i)2-s + (0.384 − 0.279i)3-s + (−2.69 + 1.95i)4-s + (−0.887 − 0.644i)6-s − 3.03·7-s + (2.48 + 1.80i)8-s + (−0.857 + 2.63i)9-s + (0.618 + 1.90i)11-s + (−0.489 + 1.50i)12-s + (0.441 − 1.35i)13-s + (2.16 + 6.66i)14-s + (0.136 − 0.420i)16-s + (1.50 + 1.09i)17-s + 6.40·18-s + (−0.730 − 0.530i)19-s + ⋯ |
L(s) = 1 | + (−0.504 − 1.55i)2-s + (0.221 − 0.161i)3-s + (−1.34 + 0.979i)4-s + (−0.362 − 0.263i)6-s − 1.14·7-s + (0.880 + 0.639i)8-s + (−0.285 + 0.879i)9-s + (0.186 + 0.573i)11-s + (−0.141 + 0.434i)12-s + (0.122 − 0.376i)13-s + (0.578 + 1.78i)14-s + (0.0341 − 0.105i)16-s + (0.365 + 0.265i)17-s + 1.51·18-s + (−0.167 − 0.121i)19-s + ⋯ |
Λ(s)=(=(625s/2ΓC(s)L(s)(0.998−0.0627i)Λ(2−s)
Λ(s)=(=(625s/2ΓC(s+1/2)L(s)(0.998−0.0627i)Λ(1−s)
Degree: |
2 |
Conductor: |
625
= 54
|
Sign: |
0.998−0.0627i
|
Analytic conductor: |
4.99065 |
Root analytic conductor: |
2.23397 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ625(126,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 625, ( :1/2), 0.998−0.0627i)
|
Particular Values
L(1) |
≈ |
0.596338+0.0187407i |
L(21) |
≈ |
0.596338+0.0187407i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
good | 2 | 1+(0.713+2.19i)T+(−1.61+1.17i)T2 |
| 3 | 1+(−0.384+0.279i)T+(0.927−2.85i)T2 |
| 7 | 1+3.03T+7T2 |
| 11 | 1+(−0.618−1.90i)T+(−8.89+6.46i)T2 |
| 13 | 1+(−0.441+1.35i)T+(−10.5−7.64i)T2 |
| 17 | 1+(−1.50−1.09i)T+(5.25+16.1i)T2 |
| 19 | 1+(0.730+0.530i)T+(5.87+18.0i)T2 |
| 23 | 1+(−1.02−3.16i)T+(−18.6+13.5i)T2 |
| 29 | 1+(3.20−2.32i)T+(8.96−27.5i)T2 |
| 31 | 1+(−5.21−3.78i)T+(9.57+29.4i)T2 |
| 37 | 1+(1.18−3.63i)T+(−29.9−21.7i)T2 |
| 41 | 1+(0.566−1.74i)T+(−33.1−24.0i)T2 |
| 43 | 1−3.59T+43T2 |
| 47 | 1+(3.88−2.82i)T+(14.5−44.6i)T2 |
| 53 | 1+(7.68−5.58i)T+(16.3−50.4i)T2 |
| 59 | 1+(−3.28+10.1i)T+(−47.7−34.6i)T2 |
| 61 | 1+(−4.41−13.5i)T+(−49.3+35.8i)T2 |
| 67 | 1+(8.64+6.28i)T+(20.7+63.7i)T2 |
| 71 | 1+(10.0−7.32i)T+(21.9−67.5i)T2 |
| 73 | 1+(0.0827+0.254i)T+(−59.0+42.9i)T2 |
| 79 | 1+(−6.93+5.03i)T+(24.4−75.1i)T2 |
| 83 | 1+(10.2+7.41i)T+(25.6+78.9i)T2 |
| 89 | 1+(1.47+4.53i)T+(−72.0+52.3i)T2 |
| 97 | 1+(8.05−5.85i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.50241224257397284840976882660, −9.943279928854983457418878919515, −9.168672300875782641572355454524, −8.335862739684507776961413404040, −7.31254261228001964311882502128, −6.10135764910405274155832086908, −4.72513616523534872158595593619, −3.44237156230297242662585876078, −2.74392902853022881341437005232, −1.48417765416622127209427782830,
0.38723235570199566519346775603, 3.00019534410358030816140109604, 4.15042437662491425967491422160, 5.59382894793147770674556083883, 6.32673647371329236526848442478, 6.85714483758297597974021921694, 7.977383952205929165976296870740, 8.810759929499990106821755110419, 9.421041306267646508548504566427, 10.05352159186660096876441794660