Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [625,2,Mod(126,625)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(625, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("625.126");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 625.d (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 25) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
126.1 |
|
−0.713605 | − | 2.19625i | 0.384204 | − | 0.279141i | −2.69625 | + | 1.95894i | 0 | −0.887234 | − | 0.644613i | −3.03582 | 2.48990 | + | 1.80902i | −0.857358 | + | 2.63868i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
126.2 | −0.350334 | − | 1.07822i | −2.10569 | + | 1.52988i | 0.578217 | − | 0.420099i | 0 | 2.38723 | + | 1.73443i | −0.407162 | −2.48990 | − | 1.80902i | 1.16637 | − | 3.58973i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
126.3 | 0.350334 | + | 1.07822i | 2.10569 | − | 1.52988i | 0.578217 | − | 0.420099i | 0 | 2.38723 | + | 1.73443i | 0.407162 | 2.48990 | + | 1.80902i | 1.16637 | − | 3.58973i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
126.4 | 0.713605 | + | 2.19625i | −0.384204 | + | 0.279141i | −2.69625 | + | 1.95894i | 0 | −0.887234 | − | 0.644613i | 3.03582 | −2.48990 | − | 1.80902i | −0.857358 | + | 2.63868i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
251.1 | −1.68703 | + | 1.22570i | 0.679371 | − | 2.09089i | 0.725700 | − | 2.23347i | 0 | 1.41668 | + | 4.36010i | −0.992398 | 0.224514 | + | 0.690983i | −1.48322 | − | 1.07763i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
251.2 | −0.148189 | + | 0.107666i | 0.454857 | − | 1.39991i | −0.607666 | + | 1.87020i | 0 | 0.0833172 | + | 0.256424i | 3.26086 | −0.224514 | − | 0.690983i | 0.674207 | + | 0.489840i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
251.3 | 0.148189 | − | 0.107666i | −0.454857 | + | 1.39991i | −0.607666 | + | 1.87020i | 0 | 0.0833172 | + | 0.256424i | −3.26086 | 0.224514 | + | 0.690983i | 0.674207 | + | 0.489840i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
251.4 | 1.68703 | − | 1.22570i | −0.679371 | + | 2.09089i | 0.725700 | − | 2.23347i | 0 | 1.41668 | + | 4.36010i | 0.992398 | −0.224514 | − | 0.690983i | −1.48322 | − | 1.07763i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
376.1 | −1.68703 | − | 1.22570i | 0.679371 | + | 2.09089i | 0.725700 | + | 2.23347i | 0 | 1.41668 | − | 4.36010i | −0.992398 | 0.224514 | − | 0.690983i | −1.48322 | + | 1.07763i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
376.2 | −0.148189 | − | 0.107666i | 0.454857 | + | 1.39991i | −0.607666 | − | 1.87020i | 0 | 0.0833172 | − | 0.256424i | 3.26086 | −0.224514 | + | 0.690983i | 0.674207 | − | 0.489840i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
376.3 | 0.148189 | + | 0.107666i | −0.454857 | − | 1.39991i | −0.607666 | − | 1.87020i | 0 | 0.0833172 | − | 0.256424i | −3.26086 | 0.224514 | − | 0.690983i | 0.674207 | − | 0.489840i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
376.4 | 1.68703 | + | 1.22570i | −0.679371 | − | 2.09089i | 0.725700 | + | 2.23347i | 0 | 1.41668 | − | 4.36010i | 0.992398 | −0.224514 | + | 0.690983i | −1.48322 | + | 1.07763i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
501.1 | −0.713605 | + | 2.19625i | 0.384204 | + | 0.279141i | −2.69625 | − | 1.95894i | 0 | −0.887234 | + | 0.644613i | −3.03582 | 2.48990 | − | 1.80902i | −0.857358 | − | 2.63868i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
501.2 | −0.350334 | + | 1.07822i | −2.10569 | − | 1.52988i | 0.578217 | + | 0.420099i | 0 | 2.38723 | − | 1.73443i | −0.407162 | −2.48990 | + | 1.80902i | 1.16637 | + | 3.58973i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
501.3 | 0.350334 | − | 1.07822i | 2.10569 | + | 1.52988i | 0.578217 | + | 0.420099i | 0 | 2.38723 | − | 1.73443i | 0.407162 | 2.48990 | − | 1.80902i | 1.16637 | + | 3.58973i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
501.4 | 0.713605 | − | 2.19625i | −0.384204 | − | 0.279141i | −2.69625 | − | 1.95894i | 0 | −0.887234 | + | 0.644613i | 3.03582 | −2.48990 | + | 1.80902i | −0.857358 | − | 2.63868i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
25.d | even | 5 | 1 | inner |
25.e | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 625.2.d.o | 16 | |
5.b | even | 2 | 1 | inner | 625.2.d.o | 16 | |
5.c | odd | 4 | 1 | 625.2.e.a | 8 | ||
5.c | odd | 4 | 1 | 625.2.e.i | 8 | ||
25.d | even | 5 | 2 | 125.2.d.b | 16 | ||
25.d | even | 5 | 1 | 625.2.a.f | 8 | ||
25.d | even | 5 | 1 | inner | 625.2.d.o | 16 | |
25.e | even | 10 | 2 | 125.2.d.b | 16 | ||
25.e | even | 10 | 1 | 625.2.a.f | 8 | ||
25.e | even | 10 | 1 | inner | 625.2.d.o | 16 | |
25.f | odd | 20 | 2 | 25.2.e.a | ✓ | 8 | |
25.f | odd | 20 | 2 | 125.2.e.b | 8 | ||
25.f | odd | 20 | 2 | 625.2.b.c | 8 | ||
25.f | odd | 20 | 1 | 625.2.e.a | 8 | ||
25.f | odd | 20 | 1 | 625.2.e.i | 8 | ||
75.h | odd | 10 | 1 | 5625.2.a.x | 8 | ||
75.j | odd | 10 | 1 | 5625.2.a.x | 8 | ||
75.l | even | 20 | 2 | 225.2.m.a | 8 | ||
100.h | odd | 10 | 1 | 10000.2.a.bj | 8 | ||
100.j | odd | 10 | 1 | 10000.2.a.bj | 8 | ||
100.l | even | 20 | 2 | 400.2.y.c | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
25.2.e.a | ✓ | 8 | 25.f | odd | 20 | 2 | |
125.2.d.b | 16 | 25.d | even | 5 | 2 | ||
125.2.d.b | 16 | 25.e | even | 10 | 2 | ||
125.2.e.b | 8 | 25.f | odd | 20 | 2 | ||
225.2.m.a | 8 | 75.l | even | 20 | 2 | ||
400.2.y.c | 8 | 100.l | even | 20 | 2 | ||
625.2.a.f | 8 | 25.d | even | 5 | 1 | ||
625.2.a.f | 8 | 25.e | even | 10 | 1 | ||
625.2.b.c | 8 | 25.f | odd | 20 | 2 | ||
625.2.d.o | 16 | 1.a | even | 1 | 1 | trivial | |
625.2.d.o | 16 | 5.b | even | 2 | 1 | inner | |
625.2.d.o | 16 | 25.d | even | 5 | 1 | inner | |
625.2.d.o | 16 | 25.e | even | 10 | 1 | inner | |
625.2.e.a | 8 | 5.c | odd | 4 | 1 | ||
625.2.e.a | 8 | 25.f | odd | 20 | 1 | ||
625.2.e.i | 8 | 5.c | odd | 4 | 1 | ||
625.2.e.i | 8 | 25.f | odd | 20 | 1 | ||
5625.2.a.x | 8 | 75.h | odd | 10 | 1 | ||
5625.2.a.x | 8 | 75.j | odd | 10 | 1 | ||
10000.2.a.bj | 8 | 100.h | odd | 10 | 1 | ||
10000.2.a.bj | 8 | 100.j | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|