Properties

Label 625.2.d.o
Level 625625
Weight 22
Character orbit 625.d
Analytic conductor 4.9914.991
Analytic rank 00
Dimension 1616
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [625,2,Mod(126,625)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(625, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("625.126");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 625=54 625 = 5^{4}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 625.d (of order 55, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.990650126334.99065012633
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ5)\Q(\zeta_{5})
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+x144x1249x10+11x8+395x6+900x4+1125x2+625 x^{16} + x^{14} - 4x^{12} - 49x^{10} + 11x^{8} + 395x^{6} + 900x^{4} + 1125x^{2} + 625 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 52 5^{2}
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β13β11β1)q2+(β13β12+β6)q3+(β9β8β7+1)q4+(β8+2β7+2β5+2)q6++(2β92β3++2)q99+O(q100) q + ( - \beta_{13} - \beta_{11} - \beta_1) q^{2} + (\beta_{13} - \beta_{12} + \cdots - \beta_{6}) q^{3} + ( - \beta_{9} - \beta_{8} - \beta_{7} + \cdots - 1) q^{4} + (\beta_{8} + 2 \beta_{7} + 2 \beta_{5} + 2) q^{6}+ \cdots + ( - 2 \beta_{9} - 2 \beta_{3} + \cdots + 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q8q4+12q62q98q11+14q144q1620q19+2q21+40q24+12q2630q29+2q31+24q3434q3624q3918q4116q44+32q46++16q99+O(q100) 16 q - 8 q^{4} + 12 q^{6} - 2 q^{9} - 8 q^{11} + 14 q^{14} - 4 q^{16} - 20 q^{19} + 2 q^{21} + 40 q^{24} + 12 q^{26} - 30 q^{29} + 2 q^{31} + 24 q^{34} - 34 q^{36} - 24 q^{39} - 18 q^{41} - 16 q^{44} + 32 q^{46}+ \cdots + 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+x144x1249x10+11x8+395x6+900x4+1125x2+625 x^{16} + x^{14} - 4x^{12} - 49x^{10} + 11x^{8} + 395x^{6} + 900x^{4} + 1125x^{2} + 625 : Copy content Toggle raw display

β1\beta_{1}== (22849ν152422021ν13+6573709ν111538146ν9+97097069ν7+35093875ν)/858900625 ( 22849 \nu^{15} - 2422021 \nu^{13} + 6573709 \nu^{11} - 1538146 \nu^{9} + 97097069 \nu^{7} + \cdots - 35093875 \nu ) / 858900625 Copy content Toggle raw display
β2\beta_{2}== (948392ν142081693ν121547103ν1035207443ν8+136185777ν6++181387875)/171780125 ( 948392 \nu^{14} - 2081693 \nu^{12} - 1547103 \nu^{10} - 35207443 \nu^{8} + 136185777 \nu^{6} + \cdots + 181387875 ) / 171780125 Copy content Toggle raw display
β3\beta_{3}== (122987ν14+97172ν12701513ν105799603ν8+3932417ν6++52412250)/15616375 ( 122987 \nu^{14} + 97172 \nu^{12} - 701513 \nu^{10} - 5799603 \nu^{8} + 3932417 \nu^{6} + \cdots + 52412250 ) / 15616375 Copy content Toggle raw display
β4\beta_{4}== (1379032ν14312743ν124990978ν1061900293ν8+94590252ν6++563878625)/171780125 ( 1379032 \nu^{14} - 312743 \nu^{12} - 4990978 \nu^{10} - 61900293 \nu^{8} + 94590252 \nu^{6} + \cdots + 563878625 ) / 171780125 Copy content Toggle raw display
β5\beta_{5}== (281280ν14+69219ν12+939009ν10+12381889ν818275316ν6+167096475)/34356025 ( - 281280 \nu^{14} + 69219 \nu^{12} + 939009 \nu^{10} + 12381889 \nu^{8} - 18275316 \nu^{6} + \cdots - 167096475 ) / 34356025 Copy content Toggle raw display
β6\beta_{6}== (1157122ν15+1428203ν13+8678488ν11+43919978ν9++846395125ν)/858900625 ( - 1157122 \nu^{15} + 1428203 \nu^{13} + 8678488 \nu^{11} + 43919978 \nu^{9} + \cdots + 846395125 \nu ) / 858900625 Copy content Toggle raw display
β7\beta_{7}== (441862ν14+108648ν12+1544473ν10+20140738ν829602957ν6+215410900)/34356025 ( - 441862 \nu^{14} + 108648 \nu^{12} + 1544473 \nu^{10} + 20140738 \nu^{8} - 29602957 \nu^{6} + \cdots - 215410900 ) / 34356025 Copy content Toggle raw display
β8\beta_{8}== (2817591ν14+2379174ν12+8884104ν10+118381374ν8262226761ν6+860602375)/171780125 ( - 2817591 \nu^{14} + 2379174 \nu^{12} + 8884104 \nu^{10} + 118381374 \nu^{8} - 262226761 \nu^{6} + \cdots - 860602375 ) / 171780125 Copy content Toggle raw display
β9\beta_{9}== (626638ν14+144621ν12+2783831ν10+27217946ν841997039ν6+222107450)/34356025 ( - 626638 \nu^{14} + 144621 \nu^{12} + 2783831 \nu^{10} + 27217946 \nu^{8} - 41997039 \nu^{6} + \cdots - 222107450 ) / 34356025 Copy content Toggle raw display
β10\beta_{10}== (257689ν15260409ν13+1184711ν11+13501191ν94440499ν7+189940875ν)/78081875 ( - 257689 \nu^{15} - 260409 \nu^{13} + 1184711 \nu^{11} + 13501191 \nu^{9} - 4440499 \nu^{7} + \cdots - 189940875 \nu ) / 78081875 Copy content Toggle raw display
β11\beta_{11}== (3711283ν15+2442853ν1318411087ν11175485672ν9++1573606875ν)/858900625 ( 3711283 \nu^{15} + 2442853 \nu^{13} - 18411087 \nu^{11} - 175485672 \nu^{9} + \cdots + 1573606875 \nu ) / 858900625 Copy content Toggle raw display
β12\beta_{12}== (11296137ν152500148ν1348798533ν11491452273ν9++4625990250ν)/858900625 ( 11296137 \nu^{15} - 2500148 \nu^{13} - 48798533 \nu^{11} - 491452273 \nu^{9} + \cdots + 4625990250 \nu ) / 858900625 Copy content Toggle raw display
β13\beta_{13}== (1033909ν15651386ν133517956ν1144316636ν9+84515054ν7++416073000ν)/78081875 ( 1033909 \nu^{15} - 651386 \nu^{13} - 3517956 \nu^{11} - 44316636 \nu^{9} + 84515054 \nu^{7} + \cdots + 416073000 \nu ) / 78081875 Copy content Toggle raw display
β14\beta_{14}== (1468861ν15201274ν135426879ν1166369199ν9+90901286ν7++722601875ν)/78081875 ( 1468861 \nu^{15} - 201274 \nu^{13} - 5426879 \nu^{11} - 66369199 \nu^{9} + 90901286 \nu^{7} + \cdots + 722601875 \nu ) / 78081875 Copy content Toggle raw display
β15\beta_{15}== (18299323ν158550017ν1366698807ν11789938892ν9++7417196625ν)/858900625 ( 18299323 \nu^{15} - 8550017 \nu^{13} - 66698807 \nu^{11} - 789938892 \nu^{9} + \cdots + 7417196625 \nu ) / 858900625 Copy content Toggle raw display
ν\nu== (β155β14+4β13+4β125β10+5β6+β1)/5 ( -\beta_{15} - 5\beta_{14} + 4\beta_{13} + 4\beta_{12} - 5\beta_{10} + 5\beta_{6} + \beta_1 ) / 5 Copy content Toggle raw display
ν2\nu^{2}== (2β9+2β8+3β7+2β5+11β44β3β2+4)/5 ( -2\beta_{9} + 2\beta_{8} + 3\beta_{7} + 2\beta_{5} + 11\beta_{4} - 4\beta_{3} - \beta_{2} + 4 ) / 5 Copy content Toggle raw display
ν3\nu^{3}== (6β15+14β136β12+5β119β1)/5 ( -6\beta_{15} + 14\beta_{13} - 6\beta_{12} + 5\beta_{11} - 9\beta_1 ) / 5 Copy content Toggle raw display
ν4\nu^{4}== (7β913β8+3β7+7β5+6β419β326β2+14)/5 ( -7\beta_{9} - 13\beta_{8} + 3\beta_{7} + 7\beta_{5} + 6\beta_{4} - 19\beta_{3} - 26\beta_{2} + 14 ) / 5 Copy content Toggle raw display
ν5\nu^{5}== (39β1520β146β1336β1230β1029β1)/5 ( 39\beta_{15} - 20\beta_{14} - 6\beta_{13} - 36\beta_{12} - 30\beta_{10} - 29\beta_1 ) / 5 Copy content Toggle raw display
ν6\nu^{6}== (23β923β8+63β7+52β5+156β4+11β311β2+144)/5 ( 23\beta_{9} - 23\beta_{8} + 63\beta_{7} + 52\beta_{5} + 156\beta_{4} + 11\beta_{3} - 11\beta_{2} + 144 ) / 5 Copy content Toggle raw display
ν7\nu^{7}== (26β15190β14+184β13+49β12+190β11115β10++66β1)/5 ( - 26 \beta_{15} - 190 \beta_{14} + 184 \beta_{13} + 49 \beta_{12} + 190 \beta_{11} - 115 \beta_{10} + \cdots + 66 \beta_1 ) / 5 Copy content Toggle raw display
ν8\nu^{8}== (57β918β8+363β7208β5+381β4114β396β2+39)/5 ( -57\beta_{9} - 18\beta_{8} + 363\beta_{7} - 208\beta_{5} + 381\beta_{4} - 114\beta_{3} - 96\beta_{2} + 39 ) / 5 Copy content Toggle raw display
ν9\nu^{9}== (β15+284β13286β12+285β11+285β10+190β6479β1)/5 ( -\beta_{15} + 284\beta_{13} - 286\beta_{12} + 285\beta_{11} + 285\beta_{10} + 190\beta_{6} - 479\beta_1 ) / 5 Copy content Toggle raw display
ν10\nu^{10}== (208β9688β8+208β7493β5149β4344β3896β2606)/5 ( 208\beta_{9} - 688\beta_{8} + 208\beta_{7} - 493\beta_{5} - 149\beta_{4} - 344\beta_{3} - 896\beta_{2} - 606 ) / 5 Copy content Toggle raw display
ν11\nu^{11}== (2344β15290β141651β131846β12+195β11290β10+624β1)/5 ( 2344 \beta_{15} - 290 \beta_{14} - 1651 \beta_{13} - 1846 \beta_{12} + 195 \beta_{11} - 290 \beta_{10} + \cdots - 624 \beta_1 ) / 5 Copy content Toggle raw display
ν12\nu^{12}== (2208β9683β8+2888β7683β5+3956β4+2891β3++1784)/5 ( 2208 \beta_{9} - 683 \beta_{8} + 2888 \beta_{7} - 683 \beta_{5} + 3956 \beta_{4} + 2891 \beta_{3} + \cdots + 1784 ) / 5 Copy content Toggle raw display
ν13\nu^{13}== (906β154675β14+2364β13+3769β12+7530β11++5166β1)/5 ( - 906 \beta_{15} - 4675 \beta_{14} + 2364 \beta_{13} + 3769 \beta_{12} + 7530 \beta_{11} + \cdots + 5166 \beta_1 ) / 5 Copy content Toggle raw display
ν14\nu^{14}== (393β9+1012β8+10778β718118β5619β4+1631β3+18511)/5 ( 393 \beta_{9} + 1012 \beta_{8} + 10778 \beta_{7} - 18118 \beta_{5} - 619 \beta_{4} + 1631 \beta_{3} + \cdots - 18511 ) / 5 Copy content Toggle raw display
ν15\nu^{15}== (1639β15+19130β1412431β139336β12+30920β1013429β1)/5 ( 1639\beta_{15} + 19130\beta_{14} - 12431\beta_{13} - 9336\beta_{12} + 30920\beta_{10} - 13429\beta_1 ) / 5 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/625Z)×\left(\mathbb{Z}/625\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) 1β4β5β7-1 - \beta_{4} - \beta_{5} - \beta_{7}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
126.1
−0.917186 + 1.66637i
−1.86824 + 0.357358i
1.86824 0.357358i
0.917186 1.66637i
−0.0566033 + 1.17421i
−0.644389 + 0.983224i
0.644389 0.983224i
0.0566033 1.17421i
−0.0566033 1.17421i
−0.644389 0.983224i
0.644389 + 0.983224i
0.0566033 + 1.17421i
−0.917186 1.66637i
−1.86824 0.357358i
1.86824 + 0.357358i
0.917186 + 1.66637i
−0.713605 2.19625i 0.384204 0.279141i −2.69625 + 1.95894i 0 −0.887234 0.644613i −3.03582 2.48990 + 1.80902i −0.857358 + 2.63868i 0
126.2 −0.350334 1.07822i −2.10569 + 1.52988i 0.578217 0.420099i 0 2.38723 + 1.73443i −0.407162 −2.48990 1.80902i 1.16637 3.58973i 0
126.3 0.350334 + 1.07822i 2.10569 1.52988i 0.578217 0.420099i 0 2.38723 + 1.73443i 0.407162 2.48990 + 1.80902i 1.16637 3.58973i 0
126.4 0.713605 + 2.19625i −0.384204 + 0.279141i −2.69625 + 1.95894i 0 −0.887234 0.644613i 3.03582 −2.48990 1.80902i −0.857358 + 2.63868i 0
251.1 −1.68703 + 1.22570i 0.679371 2.09089i 0.725700 2.23347i 0 1.41668 + 4.36010i −0.992398 0.224514 + 0.690983i −1.48322 1.07763i 0
251.2 −0.148189 + 0.107666i 0.454857 1.39991i −0.607666 + 1.87020i 0 0.0833172 + 0.256424i 3.26086 −0.224514 0.690983i 0.674207 + 0.489840i 0
251.3 0.148189 0.107666i −0.454857 + 1.39991i −0.607666 + 1.87020i 0 0.0833172 + 0.256424i −3.26086 0.224514 + 0.690983i 0.674207 + 0.489840i 0
251.4 1.68703 1.22570i −0.679371 + 2.09089i 0.725700 2.23347i 0 1.41668 + 4.36010i 0.992398 −0.224514 0.690983i −1.48322 1.07763i 0
376.1 −1.68703 1.22570i 0.679371 + 2.09089i 0.725700 + 2.23347i 0 1.41668 4.36010i −0.992398 0.224514 0.690983i −1.48322 + 1.07763i 0
376.2 −0.148189 0.107666i 0.454857 + 1.39991i −0.607666 1.87020i 0 0.0833172 0.256424i 3.26086 −0.224514 + 0.690983i 0.674207 0.489840i 0
376.3 0.148189 + 0.107666i −0.454857 1.39991i −0.607666 1.87020i 0 0.0833172 0.256424i −3.26086 0.224514 0.690983i 0.674207 0.489840i 0
376.4 1.68703 + 1.22570i −0.679371 2.09089i 0.725700 + 2.23347i 0 1.41668 4.36010i 0.992398 −0.224514 + 0.690983i −1.48322 + 1.07763i 0
501.1 −0.713605 + 2.19625i 0.384204 + 0.279141i −2.69625 1.95894i 0 −0.887234 + 0.644613i −3.03582 2.48990 1.80902i −0.857358 2.63868i 0
501.2 −0.350334 + 1.07822i −2.10569 1.52988i 0.578217 + 0.420099i 0 2.38723 1.73443i −0.407162 −2.48990 + 1.80902i 1.16637 + 3.58973i 0
501.3 0.350334 1.07822i 2.10569 + 1.52988i 0.578217 + 0.420099i 0 2.38723 1.73443i 0.407162 2.48990 1.80902i 1.16637 + 3.58973i 0
501.4 0.713605 2.19625i −0.384204 0.279141i −2.69625 1.95894i 0 −0.887234 + 0.644613i 3.03582 −2.48990 + 1.80902i −0.857358 2.63868i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 126.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
25.d even 5 1 inner
25.e even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 625.2.d.o 16
5.b even 2 1 inner 625.2.d.o 16
5.c odd 4 1 625.2.e.a 8
5.c odd 4 1 625.2.e.i 8
25.d even 5 2 125.2.d.b 16
25.d even 5 1 625.2.a.f 8
25.d even 5 1 inner 625.2.d.o 16
25.e even 10 2 125.2.d.b 16
25.e even 10 1 625.2.a.f 8
25.e even 10 1 inner 625.2.d.o 16
25.f odd 20 2 25.2.e.a 8
25.f odd 20 2 125.2.e.b 8
25.f odd 20 2 625.2.b.c 8
25.f odd 20 1 625.2.e.a 8
25.f odd 20 1 625.2.e.i 8
75.h odd 10 1 5625.2.a.x 8
75.j odd 10 1 5625.2.a.x 8
75.l even 20 2 225.2.m.a 8
100.h odd 10 1 10000.2.a.bj 8
100.j odd 10 1 10000.2.a.bj 8
100.l even 20 2 400.2.y.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
25.2.e.a 8 25.f odd 20 2
125.2.d.b 16 25.d even 5 2
125.2.d.b 16 25.e even 10 2
125.2.e.b 8 25.f odd 20 2
225.2.m.a 8 75.l even 20 2
400.2.y.c 8 100.l even 20 2
625.2.a.f 8 25.d even 5 1
625.2.a.f 8 25.e even 10 1
625.2.b.c 8 25.f odd 20 2
625.2.d.o 16 1.a even 1 1 trivial
625.2.d.o 16 5.b even 2 1 inner
625.2.d.o 16 25.d even 5 1 inner
625.2.d.o 16 25.e even 10 1 inner
625.2.e.a 8 5.c odd 4 1
625.2.e.a 8 25.f odd 20 1
625.2.e.i 8 5.c odd 4 1
625.2.e.i 8 25.f odd 20 1
5625.2.a.x 8 75.h odd 10 1
5625.2.a.x 8 75.j odd 10 1
10000.2.a.bj 8 100.h odd 10 1
10000.2.a.bj 8 100.j odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(625,[χ])S_{2}^{\mathrm{new}}(625, [\chi]):

T216+8T214+38T212+146T210+755T28+1246T26+863T2417T22+1 T_{2}^{16} + 8T_{2}^{14} + 38T_{2}^{12} + 146T_{2}^{10} + 755T_{2}^{8} + 1246T_{2}^{6} + 863T_{2}^{4} - 17T_{2}^{2} + 1 Copy content Toggle raw display
T316+7T314+53T312+399T310+2105T38+4704T36+4448T34448T32+256 T_{3}^{16} + 7T_{3}^{14} + 53T_{3}^{12} + 399T_{3}^{10} + 2105T_{3}^{8} + 4704T_{3}^{6} + 4448T_{3}^{4} - 448T_{3}^{2} + 256 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16+8T14++1 T^{16} + 8 T^{14} + \cdots + 1 Copy content Toggle raw display
33 T16+7T14++256 T^{16} + 7 T^{14} + \cdots + 256 Copy content Toggle raw display
55 T16 T^{16} Copy content Toggle raw display
77 (T821T6++16)2 (T^{8} - 21 T^{6} + \cdots + 16)^{2} Copy content Toggle raw display
1111 (T4+2T3+4T2++16)4 (T^{4} + 2 T^{3} + 4 T^{2} + \cdots + 16)^{4} Copy content Toggle raw display
1313 T163T14++1 T^{16} - 3 T^{14} + \cdots + 1 Copy content Toggle raw display
1717 T16+53T14++3748096 T^{16} + 53 T^{14} + \cdots + 3748096 Copy content Toggle raw display
1919 (T8+10T7++400)2 (T^{8} + 10 T^{7} + \cdots + 400)^{2} Copy content Toggle raw display
2323 T16+7T14++65536 T^{16} + 7 T^{14} + \cdots + 65536 Copy content Toggle raw display
2929 (T8+15T7++483025)2 (T^{8} + 15 T^{7} + \cdots + 483025)^{2} Copy content Toggle raw display
3131 (T8T73T6++1936)2 (T^{8} - T^{7} - 3 T^{6} + \cdots + 1936)^{2} Copy content Toggle raw display
3737 T16++13521270961 T^{16} + \cdots + 13521270961 Copy content Toggle raw display
4141 (T8+9T7++13456)2 (T^{8} + 9 T^{7} + \cdots + 13456)^{2} Copy content Toggle raw display
4343 (T8129T6++246016)2 (T^{8} - 129 T^{6} + \cdots + 246016)^{2} Copy content Toggle raw display
4747 T16++4294967296 T^{16} + \cdots + 4294967296 Copy content Toggle raw display
5353 T16++76661949773761 T^{16} + \cdots + 76661949773761 Copy content Toggle raw display
5959 (T8+15T7++4080400)2 (T^{8} + 15 T^{7} + \cdots + 4080400)^{2} Copy content Toggle raw display
6161 (T86T7++116281)2 (T^{8} - 6 T^{7} + \cdots + 116281)^{2} Copy content Toggle raw display
6767 T16++60523872256 T^{16} + \cdots + 60523872256 Copy content Toggle raw display
7171 (T8+29T7++24245776)2 (T^{8} + 29 T^{7} + \cdots + 24245776)^{2} Copy content Toggle raw display
7373 T1648T14++1 T^{16} - 48 T^{14} + \cdots + 1 Copy content Toggle raw display
7979 (T810T7++33408400)2 (T^{8} - 10 T^{7} + \cdots + 33408400)^{2} Copy content Toggle raw display
8383 T16++9971220736 T^{16} + \cdots + 9971220736 Copy content Toggle raw display
8989 (T8+40T7++1392400)2 (T^{8} + 40 T^{7} + \cdots + 1392400)^{2} Copy content Toggle raw display
9797 T16++90 ⁣ ⁣61 T^{16} + \cdots + 90\!\cdots\!61 Copy content Toggle raw display
show more
show less