L(s) = 1 | + (−1.35 − 2.35i)2-s + (−0.5 − 0.866i)3-s + (−2.69 + 4.65i)4-s + (−0.467 − 0.809i)5-s + (−1.35 + 2.35i)6-s + 4.17·7-s + 9.18·8-s + (−0.499 + 0.866i)9-s + (−1.27 + 2.20i)10-s − 11-s + 5.38·12-s + (−0.486 + 0.841i)13-s + (−5.67 − 9.83i)14-s + (−0.467 + 0.809i)15-s + (−7.09 − 12.2i)16-s + (−2.03 − 3.51i)17-s + ⋯ |
L(s) = 1 | + (−0.960 − 1.66i)2-s + (−0.288 − 0.499i)3-s + (−1.34 + 2.32i)4-s + (−0.209 − 0.362i)5-s + (−0.554 + 0.960i)6-s + 1.57·7-s + 3.24·8-s + (−0.166 + 0.288i)9-s + (−0.401 + 0.695i)10-s − 0.301·11-s + 1.55·12-s + (−0.134 + 0.233i)13-s + (−1.51 − 2.62i)14-s + (−0.120 + 0.209i)15-s + (−1.77 − 3.07i)16-s + (−0.492 − 0.853i)17-s + ⋯ |
Λ(s)=(=(627s/2ΓC(s)L(s)(−0.853−0.521i)Λ(2−s)
Λ(s)=(=(627s/2ΓC(s+1/2)L(s)(−0.853−0.521i)Λ(1−s)
Degree: |
2 |
Conductor: |
627
= 3⋅11⋅19
|
Sign: |
−0.853−0.521i
|
Analytic conductor: |
5.00662 |
Root analytic conductor: |
2.23754 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ627(463,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 627, ( :1/2), −0.853−0.521i)
|
Particular Values
L(1) |
≈ |
0.173483+0.616406i |
L(21) |
≈ |
0.173483+0.616406i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.5+0.866i)T |
| 11 | 1+T |
| 19 | 1+(4.11+1.43i)T |
good | 2 | 1+(1.35+2.35i)T+(−1+1.73i)T2 |
| 5 | 1+(0.467+0.809i)T+(−2.5+4.33i)T2 |
| 7 | 1−4.17T+7T2 |
| 13 | 1+(0.486−0.841i)T+(−6.5−11.2i)T2 |
| 17 | 1+(2.03+3.51i)T+(−8.5+14.7i)T2 |
| 23 | 1+(−4.65+8.06i)T+(−11.5−19.9i)T2 |
| 29 | 1+(0.0766−0.132i)T+(−14.5−25.1i)T2 |
| 31 | 1+3.05T+31T2 |
| 37 | 1+4.81T+37T2 |
| 41 | 1+(2.91+5.05i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−5.79−10.0i)T+(−21.5+37.2i)T2 |
| 47 | 1+(0.867−1.50i)T+(−23.5−40.7i)T2 |
| 53 | 1+(0.367−0.637i)T+(−26.5−45.8i)T2 |
| 59 | 1+(2.98+5.16i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−2.37+4.11i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−3.59+6.22i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−3.90−6.76i)T+(−35.5+61.4i)T2 |
| 73 | 1+(5.61+9.72i)T+(−36.5+63.2i)T2 |
| 79 | 1+(7.31+12.6i)T+(−39.5+68.4i)T2 |
| 83 | 1+4.35T+83T2 |
| 89 | 1+(7.58−13.1i)T+(−44.5−77.0i)T2 |
| 97 | 1+(0.525+0.910i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.49226753042344901985530161637, −9.139428848236019520256532048795, −8.542302857346087208568082662199, −7.926086490271844637665717217509, −6.92392865008310109874856724721, −4.87328076062000119498681078889, −4.43896090829304772892719411191, −2.69839233445214445121569845715, −1.81533541244290032747277457749, −0.53892193752777882306174372226,
1.54721344136695604898172448670, 4.10161877799114139805574222748, 5.16312878727932510584672043101, 5.65714728751514833247041291262, 6.92762193503113121110238844617, 7.58298377916991779931009272764, 8.453985600255979263235490814840, 8.983100943489349499560726565239, 10.15467158617182563131755966657, 10.81115314071344968414474544047