gp: [N,k,chi] = [627,2,Mod(463,627)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(627, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("627.463");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [14,-1,-7,-9,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 13 1,\beta_1,\ldots,\beta_{13} 1 , β 1 , … , β 1 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 14 − x 13 + 12 x 12 − 5 x 11 + 94 x 10 − 34 x 9 + 375 x 8 − 46 x 7 + 1040 x 6 + ⋯ + 9 x^{14} - x^{13} + 12 x^{12} - 5 x^{11} + 94 x^{10} - 34 x^{9} + 375 x^{8} - 46 x^{7} + 1040 x^{6} + \cdots + 9 x 1 4 − x 1 3 + 1 2 x 1 2 − 5 x 1 1 + 9 4 x 1 0 − 3 4 x 9 + 3 7 5 x 8 − 4 6 x 7 + 1 0 4 0 x 6 + ⋯ + 9
x^14 - x^13 + 12*x^12 - 5*x^11 + 94*x^10 - 34*x^9 + 375*x^8 - 46*x^7 + 1040*x^6 - 63*x^5 + 1295*x^4 + 674*x^3 + 793*x^2 + 87*x + 9
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( 12492522413 ν 13 − 204368968522 ν 12 + 542757010127 ν 11 + ⋯ + 23712717353469 ) / 229458856979425 ( 12492522413 \nu^{13} - 204368968522 \nu^{12} + 542757010127 \nu^{11} + \cdots + 23712717353469 ) / 229458856979425 ( 1 2 4 9 2 5 2 2 4 1 3 ν 1 3 − 2 0 4 3 6 8 9 6 8 5 2 2 ν 1 2 + 5 4 2 7 5 7 0 1 0 1 2 7 ν 1 1 + ⋯ + 2 3 7 1 2 7 1 7 3 5 3 4 6 9 ) / 2 2 9 4 5 8 8 5 6 9 7 9 4 2 5
(12492522413*v^13 - 204368968522*v^12 + 542757010127*v^11 - 2353036102176*v^10 + 4173865794440*v^9 - 17208242514637*v^8 + 28327934537566*v^7 - 63367221095436*v^6 + 82251019929668*v^5 - 157393350709793*v^4 + 248597933798784*v^3 - 130927359258800*v^2 - 14432052033516*v + 23712717353469) / 229458856979425
β 3 \beta_{3} β 3 = = =
( 191876446109 ν 13 − 392846741171 ν 12 + 2290573490111 ν 11 + ⋯ − 688264138236558 ) / 229458856979425 ( 191876446109 \nu^{13} - 392846741171 \nu^{12} + 2290573490111 \nu^{11} + \cdots - 688264138236558 ) / 229458856979425 ( 1 9 1 8 7 6 4 4 6 1 0 9 ν 1 3 − 3 9 2 8 4 6 7 4 1 1 7 1 ν 1 2 + 2 2 9 0 5 7 3 4 9 0 1 1 1 ν 1 1 + ⋯ − 6 8 8 2 6 4 1 3 8 2 3 6 5 5 8 ) / 2 2 9 4 5 8 8 5 6 9 7 9 4 2 5
(191876446109*v^13 - 392846741171*v^12 + 2290573490111*v^11 - 2999568687618*v^10 + 16783496752595*v^9 - 23643238632691*v^8 + 62792565064438*v^7 - 69258796620148*v^6 + 156606321797774*v^5 - 232420117273949*v^4 + 139347319365162*v^3 - 205120234672400*v^2 - 22625867903538*v - 688264138236558) / 229458856979425
β 4 \beta_{4} β 4 = = =
( 233645909396 ν 13 + 1159637467626 ν 12 − 858485307716 ν 11 + ⋯ − 78464232577577 ) / 229458856979425 ( 233645909396 \nu^{13} + 1159637467626 \nu^{12} - 858485307716 \nu^{11} + \cdots - 78464232577577 ) / 229458856979425 ( 2 3 3 6 4 5 9 0 9 3 9 6 ν 1 3 + 1 1 5 9 6 3 7 4 6 7 6 2 6 ν 1 2 − 8 5 8 4 8 5 3 0 7 7 1 6 ν 1 1 + ⋯ − 7 8 4 6 4 2 3 2 5 7 7 5 7 7 ) / 2 2 9 4 5 8 8 5 6 9 7 9 4 2 5
(233645909396*v^13 + 1159637467626*v^12 - 858485307716*v^11 + 16343124230858*v^10 - 10812659744195*v^9 + 116412585089946*v^8 - 148165858874528*v^7 + 435778975801013*v^6 - 477029759614594*v^5 + 1035309595717144*v^4 - 1164335685425297*v^3 + 839764902394400*v^2 + 92538468052878*v - 78464232577577) / 229458856979425
β 5 \beta_{5} β 5 = = =
( − 1254063459263 ν 13 + 2622520781297 ν 12 − 21134211907002 ν 11 + ⋯ − 5542565905719 ) / 688376570938275 ( - 1254063459263 \nu^{13} + 2622520781297 \nu^{12} - 21134211907002 \nu^{11} + \cdots - 5542565905719 ) / 688376570938275 ( − 1 2 5 4 0 6 3 4 5 9 2 6 3 ν 1 3 + 2 6 2 2 5 2 0 7 8 1 2 9 7 ν 1 2 − 2 1 1 3 4 2 1 1 9 0 7 0 0 2 ν 1 1 + ⋯ − 5 5 4 2 5 6 5 9 0 5 7 1 9 ) / 6 8 8 3 7 6 5 7 0 9 3 8 2 7 5
(-1254063459263*v^13 + 2622520781297*v^12 - 21134211907002*v^11 + 23164466874301*v^10 - 160865974696040*v^9 + 134454336375437*v^8 - 748473556821516*v^7 + 349246862361461*v^6 - 1668839369484568*v^5 + 554057795718918*v^4 - 1868201158554334*v^3 - 648581909765050*v^2 + 2353484150507191*v - 5542565905719) / 688376570938275
β 6 \beta_{6} β 6 = = =
( − 1437608426327 ν 13 + 2093175839863 ν 12 − 16568600828333 ν 11 + ⋯ + 400858213276249 ) / 458917713958850 ( - 1437608426327 \nu^{13} + 2093175839863 \nu^{12} - 16568600828333 \nu^{11} + \cdots + 400858213276249 ) / 458917713958850 ( − 1 4 3 7 6 0 8 4 2 6 3 2 7 ν 1 3 + 2 0 9 3 1 7 5 8 3 9 8 6 3 ν 1 2 − 1 6 5 6 8 6 0 0 8 2 8 3 3 3 ν 1 1 + ⋯ + 4 0 0 8 5 8 2 1 3 2 7 6 2 4 9 ) / 4 5 8 9 1 7 7 1 3 9 5 8 8 5 0
(-1437608426327*v^13 + 2093175839863*v^12 - 16568600828333*v^11 + 19222033122129*v^10 - 124765184864285*v^9 + 153529930329298*v^8 - 433934353303414*v^7 + 612166862161169*v^6 - 1064761370508497*v^5 + 1526981437639097*v^4 - 853875651955236*v^3 + 1359647717163200*v^2 + 149991457096839*v + 400858213276249) / 458917713958850
β 7 \beta_{7} β 7 = = =
( − 1050777220112 ν 13 + 3824944080053 ν 12 − 16370513374848 ν 11 + ⋯ + 931396499850044 ) / 229458856979425 ( - 1050777220112 \nu^{13} + 3824944080053 \nu^{12} - 16370513374848 \nu^{11} + \cdots + 931396499850044 ) / 229458856979425 ( − 1 0 5 0 7 7 7 2 2 0 1 1 2 ν 1 3 + 3 8 2 4 9 4 4 0 8 0 0 5 3 ν 1 2 − 1 6 3 7 0 5 1 3 3 7 4 8 4 8 ν 1 1 + ⋯ + 9 3 1 3 9 6 4 9 9 8 5 0 0 4 4 ) / 2 2 9 4 5 8 8 5 6 9 7 9 4 2 5
(-1050777220112*v^13 + 3824944080053*v^12 - 16370513374848*v^11 + 37402968774449*v^10 - 122271680406985*v^9 + 281802233878763*v^8 - 579516985496284*v^7 + 997180563884414*v^6 - 1558103303218757*v^5 + 2655790430296982*v^4 - 2575217695624991*v^3 + 2266279015489200*v^2 + 249886148067459*v + 931396499850044) / 229458856979425
β 8 \beta_{8} β 8 = = =
( 3414237642421 ν 13 − 7699374314749 ν 12 + 43882057476759 ν 11 + ⋯ − 25 ⋯ 27 ) / 458917713958850 ( 3414237642421 \nu^{13} - 7699374314749 \nu^{12} + 43882057476759 \nu^{11} + \cdots - 25\!\cdots\!27 ) / 458917713958850 ( 3 4 1 4 2 3 7 6 4 2 4 2 1 ν 1 3 − 7 6 9 9 3 7 4 3 1 4 7 4 9 ν 1 2 + 4 3 8 8 2 0 5 7 4 7 6 7 5 9 ν 1 1 + ⋯ − 2 5 ⋯ 2 7 ) / 4 5 8 9 1 7 7 1 3 9 5 8 8 5 0
(3414237642421*v^13 - 7699374314749*v^12 + 43882057476759*v^11 - 70497609649267*v^10 + 327569887733855*v^9 - 545051972940454*v^8 + 1309688978920322*v^7 - 1972855778975637*v^6 + 3358457777649331*v^5 - 5264628791135131*v^4 + 3977249419176228*v^3 - 4582932155553600*v^2 - 505443232896597*v - 2500778386511027) / 458917713958850
β 9 \beta_{9} β 9 = = =
( − 14394158081609 ν 13 + 19182465543746 ν 12 − 173373160679511 ν 11 + ⋯ − 12 ⋯ 92 ) / 13 ⋯ 50 ( - 14394158081609 \nu^{13} + 19182465543746 \nu^{12} - 173373160679511 \nu^{11} + \cdots - 12\!\cdots\!92 ) / 13\!\cdots\!50 ( − 1 4 3 9 4 1 5 8 0 8 1 6 0 9 ν 1 3 + 1 9 1 8 2 4 6 5 5 4 3 7 4 6 ν 1 2 − 1 7 3 3 7 3 1 6 0 6 7 9 5 1 1 ν 1 1 + ⋯ − 1 2 ⋯ 9 2 ) / 1 3 ⋯ 5 0
(-14394158081609*v^13 + 19182465543746*v^12 - 173373160679511*v^11 + 112551866288368*v^10 - 1337015451365945*v^9 + 773249574686741*v^8 - 5327812494518913*v^7 + 1208086609706648*v^6 - 14916808336547749*v^5 + 1779817940926674*v^4 - 18448081063430662*v^3 - 11864123953379950*v^2 - 11580892154463137*v - 1271057045255292) / 1376753141876550
β 10 \beta_{10} β 1 0 = = =
( 7904239117823 ν 13 − 7941716685062 ν 12 + 95463976319442 ν 11 + ⋯ + 42588388412874 ) / 688376570938275 ( 7904239117823 \nu^{13} - 7941716685062 \nu^{12} + 95463976319442 \nu^{11} + \cdots + 42588388412874 ) / 688376570938275 ( 7 9 0 4 2 3 9 1 1 7 8 2 3 ν 1 3 − 7 9 4 1 7 1 6 6 8 5 0 6 2 ν 1 2 + 9 5 4 6 3 9 7 6 3 1 9 4 4 2 ν 1 1 + ⋯ + 4 2 5 8 8 3 8 8 4 1 2 8 7 4 ) / 6 8 8 3 7 6 5 7 0 9 3 8 2 7 5
(7904239117823*v^13 - 7941716685062*v^12 + 95463976319442*v^11 - 41149466619496*v^10 + 750057585381890*v^9 - 281265727389302*v^8 + 3015714396727536*v^7 - 448578803032556*v^6 + 8410510345822228*v^5 - 744720124211853*v^4 + 10708169709710164*v^3 + 4581663364016350*v^2 + 6660843698210039*v + 42588388412874) / 688376570938275
β 11 \beta_{11} β 1 1 = = =
( 7904239117823 ν 13 − 7941716685062 ν 12 + 95463976319442 ν 11 + ⋯ + 730964959351149 ) / 229458856979425 ( 7904239117823 \nu^{13} - 7941716685062 \nu^{12} + 95463976319442 \nu^{11} + \cdots + 730964959351149 ) / 229458856979425 ( 7 9 0 4 2 3 9 1 1 7 8 2 3 ν 1 3 − 7 9 4 1 7 1 6 6 8 5 0 6 2 ν 1 2 + 9 5 4 6 3 9 7 6 3 1 9 4 4 2 ν 1 1 + ⋯ + 7 3 0 9 6 4 9 5 9 3 5 1 1 4 9 ) / 2 2 9 4 5 8 8 5 6 9 7 9 4 2 5
(7904239117823*v^13 - 7941716685062*v^12 + 95463976319442*v^11 - 41149466619496*v^10 + 750057585381890*v^9 - 281265727389302*v^8 + 3015714396727536*v^7 - 448578803032556*v^6 + 8410510345822228*v^5 - 744720124211853*v^4 + 10708169709710164*v^3 + 4811122220995775*v^2 + 6660843698210039*v + 730964959351149) / 229458856979425
β 12 \beta_{12} β 1 2 = = =
( 38616818188369 ν 13 − 35376655705411 ν 12 + 457197545552226 ν 11 + ⋯ + 29 ⋯ 22 ) / 688376570938275 ( 38616818188369 \nu^{13} - 35376655705411 \nu^{12} + 457197545552226 \nu^{11} + \cdots + 29\!\cdots\!22 ) / 688376570938275 ( 3 8 6 1 6 8 1 8 1 8 8 3 6 9 ν 1 3 − 3 5 3 7 6 6 5 5 7 0 5 4 1 1 ν 1 2 + 4 5 7 1 9 7 5 4 5 5 5 2 2 2 6 ν 1 1 + ⋯ + 2 9 ⋯ 2 2 ) / 6 8 8 3 7 6 5 7 0 9 3 8 2 7 5
(38616818188369*v^13 - 35376655705411*v^12 + 457197545552226*v^11 - 155047998241163*v^10 + 3582859190445295*v^9 - 1041466844057281*v^8 + 14107692317713908*v^7 - 755681755605718*v^6 + 38875164204800309*v^5 + 93789059762916*v^4 + 46316777454149567*v^3 + 29096545730067950*v^2 + 27351737265885817*v + 2998793902155522) / 688376570938275
β 13 \beta_{13} β 1 3 = = =
( − 93208391901109 ν 13 + 95995182831046 ν 12 + ⋯ − 79 ⋯ 92 ) / 13 ⋯ 50 ( - 93208391901109 \nu^{13} + 95995182831046 \nu^{12} + \cdots - 79\!\cdots\!92 ) / 13\!\cdots\!50 ( − 9 3 2 0 8 3 9 1 9 0 1 1 0 9 ν 1 3 + 9 5 9 9 5 1 8 2 8 3 1 0 4 6 ν 1 2 + ⋯ − 7 9 ⋯ 9 2 ) / 1 3 ⋯ 5 0
(-93208391901109*v^13 + 95995182831046*v^12 - 1116292080830211*v^11 + 485721610746068*v^10 - 8730666442879645*v^9 + 3317463924881791*v^8 - 34755630046668513*v^7 + 4362795660847648*v^6 - 96456658751052899*v^5 + 5659244272618674*v^4 - 119169490599915962*v^3 - 67178097973759700*v^2 - 72834655743270637*v - 7990387698260292) / 1376753141876550
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 11 − 3 β 10 − 3 \beta_{11} - 3\beta_{10} - 3 β 1 1 − 3 β 1 0 − 3
b11 - 3*b10 - 3
ν 3 \nu^{3} ν 3 = = =
β 8 + β 7 + β 6 + 5 β 2 \beta_{8} + \beta_{7} + \beta_{6} + 5\beta_{2} β 8 + β 7 + β 6 + 5 β 2
b8 + b7 + b6 + 5*b2
ν 4 \nu^{4} ν 4 = = =
− 2 β 13 − β 12 − 6 β 11 + 13 β 10 + 2 β 9 + 2 β 8 + β 7 + ⋯ − β 1 - 2 \beta_{13} - \beta_{12} - 6 \beta_{11} + 13 \beta_{10} + 2 \beta_{9} + 2 \beta_{8} + \beta_{7} + \cdots - \beta_1 − 2 β 1 3 − β 1 2 − 6 β 1 1 + 1 3 β 1 0 + 2 β 9 + 2 β 8 + β 7 + ⋯ − β 1
-2*b13 - b12 - 6*b11 + 13*b10 + 2*b9 + 2*b8 + b7 + 2*b6 - 6*b3 - b1
ν 5 \nu^{5} ν 5 = = =
− 10 β 13 − 9 β 12 − 2 β 11 + 10 β 9 − β 5 + β 4 − 28 β 2 − 28 β 1 -10\beta_{13} - 9\beta_{12} - 2\beta_{11} + 10\beta_{9} - \beta_{5} + \beta_{4} - 28\beta_{2} - 28\beta_1 − 1 0 β 1 3 − 9 β 1 2 − 2 β 1 1 + 1 0 β 9 − β 5 + β 4 − 2 8 β 2 − 2 8 β 1
-10*b13 - 9*b12 - 2*b11 + 10*b9 - b5 + b4 - 28*b2 - 28*b1
ν 6 \nu^{6} ν 6 = = =
− 21 β 8 − 12 β 7 − 23 β 6 + 36 β 3 − 16 β 2 + 64 -21\beta_{8} - 12\beta_{7} - 23\beta_{6} + 36\beta_{3} - 16\beta_{2} + 64 − 2 1 β 8 − 1 2 β 7 − 2 3 β 6 + 3 6 β 3 − 1 6 β 2 + 6 4
-21*b8 - 12*b7 - 23*b6 + 36*b3 - 16*b2 + 64
ν 7 \nu^{7} ν 7 = = =
80 β 13 + 68 β 12 + 26 β 11 − 11 β 10 − 82 β 9 − 80 β 8 + ⋯ + 170 β 1 80 \beta_{13} + 68 \beta_{12} + 26 \beta_{11} - 11 \beta_{10} - 82 \beta_{9} - 80 \beta_{8} + \cdots + 170 \beta_1 8 0 β 1 3 + 6 8 β 1 2 + 2 6 β 1 1 − 1 1 β 1 0 − 8 2 β 9 − 8 0 β 8 + ⋯ + 1 7 0 β 1
80*b13 + 68*b12 + 26*b11 - 11*b10 - 82*b9 - 80*b8 - 68*b7 - 82*b6 + 11*b5 + 26*b3 + 170*b1
ν 8 \nu^{8} ν 8 = = =
177 β 13 + 109 β 12 + 225 β 11 − 347 β 10 − 201 β 9 + 3 β 5 + ⋯ − 347 177 \beta_{13} + 109 \beta_{12} + 225 \beta_{11} - 347 \beta_{10} - 201 \beta_{9} + 3 \beta_{5} + \cdots - 347 1 7 7 β 1 3 + 1 0 9 β 1 2 + 2 2 5 β 1 1 − 3 4 7 β 1 0 − 2 0 1 β 9 + 3 β 5 + ⋯ − 3 4 7
177*b13 + 109*b12 + 225*b11 - 347*b10 - 201*b9 + 3*b5 - 3*b4 + 170*b2 + 170*b1 - 347
ν 9 \nu^{9} ν 9 = = =
600 β 8 + 491 β 7 + 630 β 6 − 89 β 4 − 252 β 3 + 1093 β 2 − 173 600\beta_{8} + 491\beta_{7} + 630\beta_{6} - 89\beta_{4} - 252\beta_{3} + 1093\beta_{2} - 173 6 0 0 β 8 + 4 9 1 β 7 + 6 3 0 β 6 − 8 9 β 4 − 2 5 2 β 3 + 1 0 9 3 β 2 − 1 7 3
600*b8 + 491*b7 + 630*b6 - 89*b4 - 252*b3 + 1093*b2 - 173
ν 10 \nu^{10} ν 1 0 = = =
− 1393 β 13 − 902 β 12 − 1465 β 11 + 2039 β 10 + 1601 β 9 + ⋯ − 1535 β 1 - 1393 \beta_{13} - 902 \beta_{12} - 1465 \beta_{11} + 2039 \beta_{10} + 1601 \beta_{9} + \cdots - 1535 \beta_1 − 1 3 9 3 β 1 3 − 9 0 2 β 1 2 − 1 4 6 5 β 1 1 + 2 0 3 9 β 1 0 + 1 6 0 1 β 9 + ⋯ − 1 5 3 5 β 1
-1393*b13 - 902*b12 - 1465*b11 + 2039*b10 + 1601*b9 + 1393*b8 + 902*b7 + 1601*b6 - 50*b5 - 1465*b3 - 1535*b1
ν 11 \nu^{11} ν 1 1 = = =
− 4409 β 13 − 3507 β 12 − 2179 β 11 + 1844 β 10 + 4717 β 9 − 649 β 5 + ⋯ + 1844 - 4409 \beta_{13} - 3507 \beta_{12} - 2179 \beta_{11} + 1844 \beta_{10} + 4717 \beta_{9} - 649 \beta_{5} + \cdots + 1844 − 4 4 0 9 β 1 3 − 3 5 0 7 β 1 2 − 2 1 7 9 β 1 1 + 1 8 4 4 β 1 0 + 4 7 1 7 β 9 − 6 4 9 β 5 + ⋯ + 1 8 4 4
-4409*b13 - 3507*b12 - 2179*b11 + 1844*b10 + 4717*b9 - 649*b5 + 649*b4 - 7319*b2 - 7319*b1 + 1844
ν 12 \nu^{12} ν 1 2 = = =
− 10656 β 8 − 7149 β 7 − 12262 β 6 + 561 β 4 + 9869 β 3 − 12778 β 2 + 12776 -10656\beta_{8} - 7149\beta_{7} - 12262\beta_{6} + 561\beta_{4} + 9869\beta_{3} - 12778\beta_{2} + 12776 − 1 0 6 5 6 β 8 − 7 1 4 9 β 7 − 1 2 2 6 2 β 6 + 5 6 1 β 4 + 9 8 6 9 β 3 − 1 2 7 7 8 β 2 + 1 2 7 7 6
-10656*b8 - 7149*b7 - 12262*b6 + 561*b4 + 9869*b3 - 12778*b2 + 12776
ν 13 \nu^{13} ν 1 3 = = =
32226 β 13 + 25077 β 12 + 17760 β 11 − 16756 β 10 − 34954 β 9 + ⋯ + 50450 β 1 32226 \beta_{13} + 25077 \beta_{12} + 17760 \beta_{11} - 16756 \beta_{10} - 34954 \beta_{9} + \cdots + 50450 \beta_1 3 2 2 2 6 β 1 3 + 2 5 0 7 7 β 1 2 + 1 7 7 6 0 β 1 1 − 1 6 7 5 6 β 1 0 − 3 4 9 5 4 β 9 + ⋯ + 5 0 4 5 0 β 1
32226*b13 + 25077*b12 + 17760*b11 - 16756*b10 - 34954*b9 - 32226*b8 - 25077*b7 - 34954*b6 + 4552*b5 + 17760*b3 + 50450*b1
Character values
We give the values of χ \chi χ on generators for ( Z / 627 Z ) × \left(\mathbb{Z}/627\mathbb{Z}\right)^\times ( Z / 6 2 7 Z ) × .
n n n
343 343 3 4 3
419 419 4 1 9
496 496 4 9 6
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
β 10 \beta_{10} β 1 0
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 627 , [ χ ] ) S_{2}^{\mathrm{new}}(627, [\chi]) S 2 n e w ( 6 2 7 , [ χ ] ) :
T 2 14 + T 2 13 + 12 T 2 12 + 5 T 2 11 + 94 T 2 10 + 34 T 2 9 + 375 T 2 8 + ⋯ + 9 T_{2}^{14} + T_{2}^{13} + 12 T_{2}^{12} + 5 T_{2}^{11} + 94 T_{2}^{10} + 34 T_{2}^{9} + 375 T_{2}^{8} + \cdots + 9 T 2 1 4 + T 2 1 3 + 1 2 T 2 1 2 + 5 T 2 1 1 + 9 4 T 2 1 0 + 3 4 T 2 9 + 3 7 5 T 2 8 + ⋯ + 9
T2^14 + T2^13 + 12*T2^12 + 5*T2^11 + 94*T2^10 + 34*T2^9 + 375*T2^8 + 46*T2^7 + 1040*T2^6 + 63*T2^5 + 1295*T2^4 - 674*T2^3 + 793*T2^2 - 87*T2 + 9
T 5 14 + 2 T 5 13 + 26 T 5 12 + 32 T 5 11 + 429 T 5 10 + 507 T 5 9 + ⋯ + 62500 T_{5}^{14} + 2 T_{5}^{13} + 26 T_{5}^{12} + 32 T_{5}^{11} + 429 T_{5}^{10} + 507 T_{5}^{9} + \cdots + 62500 T 5 1 4 + 2 T 5 1 3 + 2 6 T 5 1 2 + 3 2 T 5 1 1 + 4 2 9 T 5 1 0 + 5 0 7 T 5 9 + ⋯ + 6 2 5 0 0
T5^14 + 2*T5^13 + 26*T5^12 + 32*T5^11 + 429*T5^10 + 507*T5^9 + 3510*T5^8 + 2926*T5^7 + 18885*T5^6 + 14857*T5^5 + 56428*T5^4 + 23965*T5^3 + 94119*T5^2 + 53250*T5 + 62500
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 14 + T 13 + ⋯ + 9 T^{14} + T^{13} + \cdots + 9 T 1 4 + T 1 3 + ⋯ + 9
T^14 + T^13 + 12*T^12 + 5*T^11 + 94*T^10 + 34*T^9 + 375*T^8 + 46*T^7 + 1040*T^6 + 63*T^5 + 1295*T^4 - 674*T^3 + 793*T^2 - 87*T + 9
3 3 3
( T 2 + T + 1 ) 7 (T^{2} + T + 1)^{7} ( T 2 + T + 1 ) 7
(T^2 + T + 1)^7
5 5 5
T 14 + 2 T 13 + ⋯ + 62500 T^{14} + 2 T^{13} + \cdots + 62500 T 1 4 + 2 T 1 3 + ⋯ + 6 2 5 0 0
T^14 + 2*T^13 + 26*T^12 + 32*T^11 + 429*T^10 + 507*T^9 + 3510*T^8 + 2926*T^7 + 18885*T^6 + 14857*T^5 + 56428*T^4 + 23965*T^3 + 94119*T^2 + 53250*T + 62500
7 7 7
( T 7 − 7 T 6 + ⋯ − 167 ) 2 (T^{7} - 7 T^{6} + \cdots - 167)^{2} ( T 7 − 7 T 6 + ⋯ − 1 6 7 ) 2
(T^7 - 7*T^6 - 15*T^5 + 188*T^4 - 159*T^3 - 1120*T^2 + 1947*T - 167)^2
11 11 1 1
( T + 1 ) 14 (T + 1)^{14} ( T + 1 ) 1 4
(T + 1)^14
13 13 1 3
T 14 + 8 T 13 + ⋯ + 400 T^{14} + 8 T^{13} + \cdots + 400 T 1 4 + 8 T 1 3 + ⋯ + 4 0 0
T^14 + 8*T^13 + 84*T^12 + 314*T^11 + 2574*T^10 + 9525*T^9 + 48665*T^8 + 82354*T^7 + 164353*T^6 + 84938*T^5 + 213357*T^4 + 115592*T^3 + 148116*T^2 - 7520*T + 400
17 17 1 7
T 14 + 9 T 13 + ⋯ + 242064 T^{14} + 9 T^{13} + \cdots + 242064 T 1 4 + 9 T 1 3 + ⋯ + 2 4 2 0 6 4
T^14 + 9*T^13 + 90*T^12 + 375*T^11 + 2335*T^10 + 7092*T^9 + 41104*T^8 + 87903*T^7 + 385855*T^6 + 526836*T^5 + 2444366*T^4 + 2707716*T^3 + 2502601*T^2 + 879204*T + 242064
19 19 1 9
T 14 + ⋯ + 893871739 T^{14} + \cdots + 893871739 T 1 4 + ⋯ + 8 9 3 8 7 1 7 3 9
T^14 + 14*T^13 + 79*T^12 + 237*T^11 + 207*T^10 - 3900*T^9 - 37178*T^8 - 196687*T^7 - 706382*T^6 - 1407900*T^5 + 1419813*T^4 + 30886077*T^3 + 195611821*T^2 + 658642334*T + 893871739
23 23 2 3
T 14 + 4 T 13 + ⋯ + 24964 T^{14} + 4 T^{13} + \cdots + 24964 T 1 4 + 4 T 1 3 + ⋯ + 2 4 9 6 4
T^14 + 4*T^13 + 104*T^12 + 492*T^11 + 8799*T^10 + 33863*T^9 + 221870*T^8 + 38740*T^7 + 948579*T^6 - 886389*T^5 + 4778998*T^4 - 4457235*T^3 + 5367151*T^2 - 375566*T + 24964
29 29 2 9
T 14 + 18 T 13 + ⋯ + 4080400 T^{14} + 18 T^{13} + \cdots + 4080400 T 1 4 + 1 8 T 1 3 + ⋯ + 4 0 8 0 4 0 0
T^14 + 18*T^13 + 288*T^12 + 2620*T^11 + 25205*T^10 + 179127*T^9 + 1347560*T^8 + 6813308*T^7 + 30517891*T^6 + 68377217*T^5 + 128774196*T^4 - 62813831*T^3 + 163988989*T^2 + 24698540*T + 4080400
31 31 3 1
( T 7 + 11 T 6 + ⋯ + 2272 ) 2 (T^{7} + 11 T^{6} + \cdots + 2272)^{2} ( T 7 + 1 1 T 6 + ⋯ + 2 2 7 2 ) 2
(T^7 + 11*T^6 + 16*T^5 - 207*T^4 - 881*T^3 - 719*T^2 + 1588*T + 2272)^2
37 37 3 7
( T 7 − 17 T 6 + ⋯ + 25138 ) 2 (T^{7} - 17 T^{6} + \cdots + 25138)^{2} ( T 7 − 1 7 T 6 + ⋯ + 2 5 1 3 8 ) 2
(T^7 - 17*T^6 + 44*T^5 + 541*T^4 - 2281*T^3 - 4513*T^2 + 16743*T + 25138)^2
41 41 4 1
T 14 + 11 T 13 + ⋯ + 25887744 T^{14} + 11 T^{13} + \cdots + 25887744 T 1 4 + 1 1 T 1 3 + ⋯ + 2 5 8 8 7 7 4 4
T^14 + 11*T^13 + 156*T^12 + 943*T^11 + 9400*T^10 + 49529*T^9 + 359946*T^8 + 1225772*T^7 + 5867843*T^6 + 12517311*T^5 + 59580083*T^4 + 90672386*T^3 + 231311332*T^2 - 71059008*T + 25887744
43 43 4 3
T 14 + ⋯ + 36773431696 T^{14} + \cdots + 36773431696 T 1 4 + ⋯ + 3 6 7 7 3 4 3 1 6 9 6
T^14 + 162*T^12 + 666*T^11 + 19655*T^10 + 72260*T^9 + 1046865*T^8 + 3547835*T^7 + 38866681*T^6 + 107966528*T^5 + 704580853*T^4 + 1323451598*T^3 + 7831215737*T^2 + 12602921844*T + 36773431696
47 47 4 7
T 14 + ⋯ + 521756964 T^{14} + \cdots + 521756964 T 1 4 + ⋯ + 5 2 1 7 5 6 9 6 4
T^14 + 13*T^13 + 278*T^12 + 1945*T^11 + 32998*T^10 + 210288*T^9 + 2472452*T^8 + 9941649*T^7 + 87890992*T^6 + 312240104*T^5 + 2110918691*T^4 + 3823705271*T^3 + 5917230811*T^2 + 1907329842*T + 521756964
53 53 5 3
T 14 + ⋯ + 566059264 T^{14} + \cdots + 566059264 T 1 4 + ⋯ + 5 6 6 0 5 9 2 6 4
T^14 - 2*T^13 + 159*T^12 + 356*T^11 + 19521*T^10 + 24033*T^9 + 631241*T^8 + 756384*T^7 + 14949435*T^6 + 13931398*T^5 + 152512230*T^4 + 125734572*T^3 + 1136916337*T^2 + 779782800*T + 566059264
59 59 5 9
T 14 + ⋯ + 1139737600 T^{14} + \cdots + 1139737600 T 1 4 + ⋯ + 1 1 3 9 7 3 7 6 0 0
T^14 + 12*T^13 + 256*T^12 + 1674*T^11 + 30972*T^10 + 209747*T^9 + 1984557*T^8 + 8694480*T^7 + 57019535*T^6 + 204498456*T^5 + 1064357481*T^4 + 2292920308*T^3 + 6017751984*T^2 - 2363605120*T + 1139737600
61 61 6 1
T 14 + ⋯ + 20194683664 T^{14} + \cdots + 20194683664 T 1 4 + ⋯ + 2 0 1 9 4 6 8 3 6 6 4
T^14 - 35*T^13 + 765*T^12 - 11002*T^11 + 120390*T^10 - 995047*T^9 + 6619150*T^8 - 34770227*T^7 + 156057152*T^6 - 585741279*T^5 + 2078669301*T^4 - 5960698024*T^3 + 14936437740*T^2 - 20254369024*T + 20194683664
67 67 6 7
T 14 + ⋯ + 143747139600 T^{14} + \cdots + 143747139600 T 1 4 + ⋯ + 1 4 3 7 4 7 1 3 9 6 0 0
T^14 - 7*T^13 + 323*T^12 - 1988*T^11 + 75368*T^10 - 393003*T^9 + 6541674*T^8 + 3164823*T^7 + 187331948*T^6 + 714234103*T^5 + 6943676033*T^4 + 24199811852*T^3 + 79611194116*T^2 + 117926189040*T + 143747139600
71 71 7 1
T 14 + ⋯ + 22895650803600 T^{14} + \cdots + 22895650803600 T 1 4 + ⋯ + 2 2 8 9 5 6 5 0 8 0 3 6 0 0
T^14 + 19*T^13 + 586*T^12 + 5925*T^11 + 140953*T^10 + 1217068*T^9 + 21833550*T^8 + 109295107*T^7 + 1536121789*T^6 + 5274369988*T^5 + 76199247380*T^4 + 128610165512*T^3 + 1570209472729*T^2 - 984802856220*T + 22895650803600
73 73 7 3
T 14 + ⋯ + 67602080016 T^{14} + \cdots + 67602080016 T 1 4 + ⋯ + 6 7 6 0 2 0 8 0 0 1 6
T^14 + 14*T^13 + 511*T^12 + 5160*T^11 + 147644*T^10 + 1384562*T^9 + 24925112*T^8 + 173867123*T^7 + 2527310368*T^6 + 15625965285*T^5 + 142906677809*T^4 + 336145393332*T^3 + 654365740996*T^2 + 226316841744*T + 67602080016
79 79 7 9
T 14 + ⋯ + 3037686466816 T^{14} + \cdots + 3037686466816 T 1 4 + ⋯ + 3 0 3 7 6 8 6 4 6 6 8 1 6
T^14 + 11*T^13 + 518*T^12 + 2357*T^11 + 143517*T^10 + 456642*T^9 + 24414372*T^8 - 3033857*T^7 + 2509678137*T^6 - 1774289252*T^5 + 168433615342*T^4 - 370039548044*T^3 + 5409655259265*T^2 + 3890086356432*T + 3037686466816
83 83 8 3
( T 7 − 9 T 6 + ⋯ + 316262 ) 2 (T^{7} - 9 T^{6} + \cdots + 316262)^{2} ( T 7 − 9 T 6 + ⋯ + 3 1 6 2 6 2 ) 2
(T^7 - 9*T^6 - 196*T^5 + 1199*T^4 + 11249*T^3 - 39809*T^2 - 165657*T + 316262)^2
89 89 8 9
T 14 + ⋯ + 1942042919184 T^{14} + \cdots + 1942042919184 T 1 4 + ⋯ + 1 9 4 2 0 4 2 9 1 9 1 8 4
T^14 + 11*T^13 + 379*T^12 + 980*T^11 + 63356*T^10 + 26581*T^9 + 7517952*T^8 - 19459739*T^7 + 532371682*T^6 - 1875876413*T^5 + 26935160389*T^4 - 122057481856*T^3 + 578743682380*T^2 - 1142026679712*T + 1942042919184
97 97 9 7
T 14 + ⋯ + 5784058809 T^{14} + \cdots + 5784058809 T 1 4 + ⋯ + 5 7 8 4 0 5 8 8 0 9
T^14 - 33*T^13 + 814*T^12 - 10143*T^11 + 102850*T^10 - 494366*T^9 + 2832001*T^8 - 3460480*T^7 + 70422398*T^6 + 11614953*T^5 + 738547843*T^4 + 901304792*T^3 + 6250376803*T^2 + 5734928571*T + 5784058809
show more
show less