Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [627,2,Mod(463,627)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(627, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("627.463");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 627.i (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
463.1 |
|
−1.35831 | − | 2.35267i | −0.500000 | − | 0.866025i | −2.69004 | + | 4.65928i | −0.467652 | − | 0.809997i | −1.35831 | + | 2.35267i | 4.17977 | 9.18241 | −0.500000 | + | 0.866025i | −1.27044 | + | 2.20046i | ||||||||||||||||||||||||||||||||||||||||||||||
463.2 | −0.914361 | − | 1.58372i | −0.500000 | − | 0.866025i | −0.672111 | + | 1.16413i | 1.20135 | + | 2.08079i | −0.914361 | + | 1.58372i | 2.48304 | −1.19924 | −0.500000 | + | 0.866025i | 2.19693 | − | 3.80519i | |||||||||||||||||||||||||||||||||||||||||||||||
463.3 | −0.794699 | − | 1.37646i | −0.500000 | − | 0.866025i | −0.263092 | + | 0.455690i | −1.98856 | − | 3.44428i | −0.794699 | + | 1.37646i | 0.0905430 | −2.34248 | −0.500000 | + | 0.866025i | −3.16061 | + | 5.47434i | |||||||||||||||||||||||||||||||||||||||||||||||
463.4 | 0.0560088 | + | 0.0970101i | −0.500000 | − | 0.866025i | 0.993726 | − | 1.72118i | −1.02085 | − | 1.76816i | 0.0560088 | − | 0.0970101i | −3.03154 | 0.446665 | −0.500000 | + | 0.866025i | 0.114353 | − | 0.198065i | |||||||||||||||||||||||||||||||||||||||||||||||
463.5 | 0.371378 | + | 0.643245i | −0.500000 | − | 0.866025i | 0.724157 | − | 1.25428i | −1.26435 | − | 2.18992i | 0.371378 | − | 0.643245i | 4.12826 | 2.56125 | −0.500000 | + | 0.866025i | 0.939105 | − | 1.62658i | |||||||||||||||||||||||||||||||||||||||||||||||
463.6 | 1.01277 | + | 1.75417i | −0.500000 | − | 0.866025i | −1.05142 | + | 1.82111i | 1.77847 | + | 3.08040i | 1.01277 | − | 1.75417i | 3.36717 | −0.208293 | −0.500000 | + | 0.866025i | −3.60237 | + | 6.23949i | |||||||||||||||||||||||||||||||||||||||||||||||
463.7 | 1.12721 | + | 1.95239i | −0.500000 | − | 0.866025i | −1.54123 | + | 2.66948i | 0.761596 | + | 1.31912i | 1.12721 | − | 1.95239i | −4.21725 | −2.44032 | −0.500000 | + | 0.866025i | −1.71696 | + | 2.97387i | |||||||||||||||||||||||||||||||||||||||||||||||
562.1 | −1.35831 | + | 2.35267i | −0.500000 | + | 0.866025i | −2.69004 | − | 4.65928i | −0.467652 | + | 0.809997i | −1.35831 | − | 2.35267i | 4.17977 | 9.18241 | −0.500000 | − | 0.866025i | −1.27044 | − | 2.20046i | |||||||||||||||||||||||||||||||||||||||||||||||
562.2 | −0.914361 | + | 1.58372i | −0.500000 | + | 0.866025i | −0.672111 | − | 1.16413i | 1.20135 | − | 2.08079i | −0.914361 | − | 1.58372i | 2.48304 | −1.19924 | −0.500000 | − | 0.866025i | 2.19693 | + | 3.80519i | |||||||||||||||||||||||||||||||||||||||||||||||
562.3 | −0.794699 | + | 1.37646i | −0.500000 | + | 0.866025i | −0.263092 | − | 0.455690i | −1.98856 | + | 3.44428i | −0.794699 | − | 1.37646i | 0.0905430 | −2.34248 | −0.500000 | − | 0.866025i | −3.16061 | − | 5.47434i | |||||||||||||||||||||||||||||||||||||||||||||||
562.4 | 0.0560088 | − | 0.0970101i | −0.500000 | + | 0.866025i | 0.993726 | + | 1.72118i | −1.02085 | + | 1.76816i | 0.0560088 | + | 0.0970101i | −3.03154 | 0.446665 | −0.500000 | − | 0.866025i | 0.114353 | + | 0.198065i | |||||||||||||||||||||||||||||||||||||||||||||||
562.5 | 0.371378 | − | 0.643245i | −0.500000 | + | 0.866025i | 0.724157 | + | 1.25428i | −1.26435 | + | 2.18992i | 0.371378 | + | 0.643245i | 4.12826 | 2.56125 | −0.500000 | − | 0.866025i | 0.939105 | + | 1.62658i | |||||||||||||||||||||||||||||||||||||||||||||||
562.6 | 1.01277 | − | 1.75417i | −0.500000 | + | 0.866025i | −1.05142 | − | 1.82111i | 1.77847 | − | 3.08040i | 1.01277 | + | 1.75417i | 3.36717 | −0.208293 | −0.500000 | − | 0.866025i | −3.60237 | − | 6.23949i | |||||||||||||||||||||||||||||||||||||||||||||||
562.7 | 1.12721 | − | 1.95239i | −0.500000 | + | 0.866025i | −1.54123 | − | 2.66948i | 0.761596 | − | 1.31912i | 1.12721 | + | 1.95239i | −4.21725 | −2.44032 | −0.500000 | − | 0.866025i | −1.71696 | − | 2.97387i | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 627.2.i.e | ✓ | 14 |
19.c | even | 3 | 1 | inner | 627.2.i.e | ✓ | 14 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
627.2.i.e | ✓ | 14 | 1.a | even | 1 | 1 | trivial |
627.2.i.e | ✓ | 14 | 19.c | even | 3 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|