Properties

Label 627.2.i.e
Level 627627
Weight 22
Character orbit 627.i
Analytic conductor 5.0075.007
Analytic rank 00
Dimension 1414
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [627,2,Mod(463,627)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(627, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("627.463");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 627=31119 627 = 3 \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 627.i (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.006620206735.00662020673
Analytic rank: 00
Dimension: 1414
Relative dimension: 77 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x14)\mathbb{Q}[x]/(x^{14} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x14x13+12x125x11+94x1034x9+375x846x7+1040x6++9 x^{14} - x^{13} + 12 x^{12} - 5 x^{11} + 94 x^{10} - 34 x^{9} + 375 x^{8} - 46 x^{7} + 1040 x^{6} + \cdots + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β131,\beta_1,\ldots,\beta_{13} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+β1)q2+(β101)q3+(β11+β10β3)q4+(β11β9++β1)q5β1q6+(β7β2+1)q7+β10q99+O(q100) q + (\beta_{2} + \beta_1) q^{2} + ( - \beta_{10} - 1) q^{3} + ( - \beta_{11} + \beta_{10} - \beta_{3}) q^{4} + ( - \beta_{11} - \beta_{9} + \cdots + \beta_1) q^{5} - \beta_1 q^{6} + ( - \beta_{7} - \beta_{2} + 1) q^{7}+ \cdots - \beta_{10} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 14qq27q39q42q5q6+14q7+12q87q913q1014q11+18q128q1316q142q155q169q17+2q1814q1932q20++7q99+O(q100) 14 q - q^{2} - 7 q^{3} - 9 q^{4} - 2 q^{5} - q^{6} + 14 q^{7} + 12 q^{8} - 7 q^{9} - 13 q^{10} - 14 q^{11} + 18 q^{12} - 8 q^{13} - 16 q^{14} - 2 q^{15} - 5 q^{16} - 9 q^{17} + 2 q^{18} - 14 q^{19} - 32 q^{20}+ \cdots + 7 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x14x13+12x125x11+94x1034x9+375x846x7+1040x6++9 x^{14} - x^{13} + 12 x^{12} - 5 x^{11} + 94 x^{10} - 34 x^{9} + 375 x^{8} - 46 x^{7} + 1040 x^{6} + \cdots + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (12492522413ν13204368968522ν12+542757010127ν11++23712717353469)/229458856979425 ( 12492522413 \nu^{13} - 204368968522 \nu^{12} + 542757010127 \nu^{11} + \cdots + 23712717353469 ) / 229458856979425 Copy content Toggle raw display
β3\beta_{3}== (191876446109ν13392846741171ν12+2290573490111ν11+688264138236558)/229458856979425 ( 191876446109 \nu^{13} - 392846741171 \nu^{12} + 2290573490111 \nu^{11} + \cdots - 688264138236558 ) / 229458856979425 Copy content Toggle raw display
β4\beta_{4}== (233645909396ν13+1159637467626ν12858485307716ν11+78464232577577)/229458856979425 ( 233645909396 \nu^{13} + 1159637467626 \nu^{12} - 858485307716 \nu^{11} + \cdots - 78464232577577 ) / 229458856979425 Copy content Toggle raw display
β5\beta_{5}== (1254063459263ν13+2622520781297ν1221134211907002ν11+5542565905719)/688376570938275 ( - 1254063459263 \nu^{13} + 2622520781297 \nu^{12} - 21134211907002 \nu^{11} + \cdots - 5542565905719 ) / 688376570938275 Copy content Toggle raw display
β6\beta_{6}== (1437608426327ν13+2093175839863ν1216568600828333ν11++400858213276249)/458917713958850 ( - 1437608426327 \nu^{13} + 2093175839863 \nu^{12} - 16568600828333 \nu^{11} + \cdots + 400858213276249 ) / 458917713958850 Copy content Toggle raw display
β7\beta_{7}== (1050777220112ν13+3824944080053ν1216370513374848ν11++931396499850044)/229458856979425 ( - 1050777220112 \nu^{13} + 3824944080053 \nu^{12} - 16370513374848 \nu^{11} + \cdots + 931396499850044 ) / 229458856979425 Copy content Toggle raw display
β8\beta_{8}== (3414237642421ν137699374314749ν12+43882057476759ν11+25 ⁣ ⁣27)/458917713958850 ( 3414237642421 \nu^{13} - 7699374314749 \nu^{12} + 43882057476759 \nu^{11} + \cdots - 25\!\cdots\!27 ) / 458917713958850 Copy content Toggle raw display
β9\beta_{9}== (14394158081609ν13+19182465543746ν12173373160679511ν11+12 ⁣ ⁣92)/13 ⁣ ⁣50 ( - 14394158081609 \nu^{13} + 19182465543746 \nu^{12} - 173373160679511 \nu^{11} + \cdots - 12\!\cdots\!92 ) / 13\!\cdots\!50 Copy content Toggle raw display
β10\beta_{10}== (7904239117823ν137941716685062ν12+95463976319442ν11++42588388412874)/688376570938275 ( 7904239117823 \nu^{13} - 7941716685062 \nu^{12} + 95463976319442 \nu^{11} + \cdots + 42588388412874 ) / 688376570938275 Copy content Toggle raw display
β11\beta_{11}== (7904239117823ν137941716685062ν12+95463976319442ν11++730964959351149)/229458856979425 ( 7904239117823 \nu^{13} - 7941716685062 \nu^{12} + 95463976319442 \nu^{11} + \cdots + 730964959351149 ) / 229458856979425 Copy content Toggle raw display
β12\beta_{12}== (38616818188369ν1335376655705411ν12+457197545552226ν11++29 ⁣ ⁣22)/688376570938275 ( 38616818188369 \nu^{13} - 35376655705411 \nu^{12} + 457197545552226 \nu^{11} + \cdots + 29\!\cdots\!22 ) / 688376570938275 Copy content Toggle raw display
β13\beta_{13}== (93208391901109ν13+95995182831046ν12+79 ⁣ ⁣92)/13 ⁣ ⁣50 ( - 93208391901109 \nu^{13} + 95995182831046 \nu^{12} + \cdots - 79\!\cdots\!92 ) / 13\!\cdots\!50 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β113β103 \beta_{11} - 3\beta_{10} - 3 Copy content Toggle raw display
ν3\nu^{3}== β8+β7+β6+5β2 \beta_{8} + \beta_{7} + \beta_{6} + 5\beta_{2} Copy content Toggle raw display
ν4\nu^{4}== 2β13β126β11+13β10+2β9+2β8+β7+β1 - 2 \beta_{13} - \beta_{12} - 6 \beta_{11} + 13 \beta_{10} + 2 \beta_{9} + 2 \beta_{8} + \beta_{7} + \cdots - \beta_1 Copy content Toggle raw display
ν5\nu^{5}== 10β139β122β11+10β9β5+β428β228β1 -10\beta_{13} - 9\beta_{12} - 2\beta_{11} + 10\beta_{9} - \beta_{5} + \beta_{4} - 28\beta_{2} - 28\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 21β812β723β6+36β316β2+64 -21\beta_{8} - 12\beta_{7} - 23\beta_{6} + 36\beta_{3} - 16\beta_{2} + 64 Copy content Toggle raw display
ν7\nu^{7}== 80β13+68β12+26β1111β1082β980β8++170β1 80 \beta_{13} + 68 \beta_{12} + 26 \beta_{11} - 11 \beta_{10} - 82 \beta_{9} - 80 \beta_{8} + \cdots + 170 \beta_1 Copy content Toggle raw display
ν8\nu^{8}== 177β13+109β12+225β11347β10201β9+3β5+347 177 \beta_{13} + 109 \beta_{12} + 225 \beta_{11} - 347 \beta_{10} - 201 \beta_{9} + 3 \beta_{5} + \cdots - 347 Copy content Toggle raw display
ν9\nu^{9}== 600β8+491β7+630β689β4252β3+1093β2173 600\beta_{8} + 491\beta_{7} + 630\beta_{6} - 89\beta_{4} - 252\beta_{3} + 1093\beta_{2} - 173 Copy content Toggle raw display
ν10\nu^{10}== 1393β13902β121465β11+2039β10+1601β9+1535β1 - 1393 \beta_{13} - 902 \beta_{12} - 1465 \beta_{11} + 2039 \beta_{10} + 1601 \beta_{9} + \cdots - 1535 \beta_1 Copy content Toggle raw display
ν11\nu^{11}== 4409β133507β122179β11+1844β10+4717β9649β5++1844 - 4409 \beta_{13} - 3507 \beta_{12} - 2179 \beta_{11} + 1844 \beta_{10} + 4717 \beta_{9} - 649 \beta_{5} + \cdots + 1844 Copy content Toggle raw display
ν12\nu^{12}== 10656β87149β712262β6+561β4+9869β312778β2+12776 -10656\beta_{8} - 7149\beta_{7} - 12262\beta_{6} + 561\beta_{4} + 9869\beta_{3} - 12778\beta_{2} + 12776 Copy content Toggle raw display
ν13\nu^{13}== 32226β13+25077β12+17760β1116756β1034954β9++50450β1 32226 \beta_{13} + 25077 \beta_{12} + 17760 \beta_{11} - 16756 \beta_{10} - 34954 \beta_{9} + \cdots + 50450 \beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/627Z)×\left(\mathbb{Z}/627\mathbb{Z}\right)^\times.

nn 343343 419419 496496
χ(n)\chi(n) 11 11 β10\beta_{10}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
463.1
1.35831 2.35267i
0.914361 1.58372i
0.794699 1.37646i
−0.0560088 + 0.0970101i
−0.371378 + 0.643245i
−1.01277 + 1.75417i
−1.12721 + 1.95239i
1.35831 + 2.35267i
0.914361 + 1.58372i
0.794699 + 1.37646i
−0.0560088 0.0970101i
−0.371378 0.643245i
−1.01277 1.75417i
−1.12721 1.95239i
−1.35831 2.35267i −0.500000 0.866025i −2.69004 + 4.65928i −0.467652 0.809997i −1.35831 + 2.35267i 4.17977 9.18241 −0.500000 + 0.866025i −1.27044 + 2.20046i
463.2 −0.914361 1.58372i −0.500000 0.866025i −0.672111 + 1.16413i 1.20135 + 2.08079i −0.914361 + 1.58372i 2.48304 −1.19924 −0.500000 + 0.866025i 2.19693 3.80519i
463.3 −0.794699 1.37646i −0.500000 0.866025i −0.263092 + 0.455690i −1.98856 3.44428i −0.794699 + 1.37646i 0.0905430 −2.34248 −0.500000 + 0.866025i −3.16061 + 5.47434i
463.4 0.0560088 + 0.0970101i −0.500000 0.866025i 0.993726 1.72118i −1.02085 1.76816i 0.0560088 0.0970101i −3.03154 0.446665 −0.500000 + 0.866025i 0.114353 0.198065i
463.5 0.371378 + 0.643245i −0.500000 0.866025i 0.724157 1.25428i −1.26435 2.18992i 0.371378 0.643245i 4.12826 2.56125 −0.500000 + 0.866025i 0.939105 1.62658i
463.6 1.01277 + 1.75417i −0.500000 0.866025i −1.05142 + 1.82111i 1.77847 + 3.08040i 1.01277 1.75417i 3.36717 −0.208293 −0.500000 + 0.866025i −3.60237 + 6.23949i
463.7 1.12721 + 1.95239i −0.500000 0.866025i −1.54123 + 2.66948i 0.761596 + 1.31912i 1.12721 1.95239i −4.21725 −2.44032 −0.500000 + 0.866025i −1.71696 + 2.97387i
562.1 −1.35831 + 2.35267i −0.500000 + 0.866025i −2.69004 4.65928i −0.467652 + 0.809997i −1.35831 2.35267i 4.17977 9.18241 −0.500000 0.866025i −1.27044 2.20046i
562.2 −0.914361 + 1.58372i −0.500000 + 0.866025i −0.672111 1.16413i 1.20135 2.08079i −0.914361 1.58372i 2.48304 −1.19924 −0.500000 0.866025i 2.19693 + 3.80519i
562.3 −0.794699 + 1.37646i −0.500000 + 0.866025i −0.263092 0.455690i −1.98856 + 3.44428i −0.794699 1.37646i 0.0905430 −2.34248 −0.500000 0.866025i −3.16061 5.47434i
562.4 0.0560088 0.0970101i −0.500000 + 0.866025i 0.993726 + 1.72118i −1.02085 + 1.76816i 0.0560088 + 0.0970101i −3.03154 0.446665 −0.500000 0.866025i 0.114353 + 0.198065i
562.5 0.371378 0.643245i −0.500000 + 0.866025i 0.724157 + 1.25428i −1.26435 + 2.18992i 0.371378 + 0.643245i 4.12826 2.56125 −0.500000 0.866025i 0.939105 + 1.62658i
562.6 1.01277 1.75417i −0.500000 + 0.866025i −1.05142 1.82111i 1.77847 3.08040i 1.01277 + 1.75417i 3.36717 −0.208293 −0.500000 0.866025i −3.60237 6.23949i
562.7 1.12721 1.95239i −0.500000 + 0.866025i −1.54123 2.66948i 0.761596 1.31912i 1.12721 + 1.95239i −4.21725 −2.44032 −0.500000 0.866025i −1.71696 2.97387i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 463.7
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 627.2.i.e 14
19.c even 3 1 inner 627.2.i.e 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
627.2.i.e 14 1.a even 1 1 trivial
627.2.i.e 14 19.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(627,[χ])S_{2}^{\mathrm{new}}(627, [\chi]):

T214+T213+12T212+5T211+94T210+34T29+375T28++9 T_{2}^{14} + T_{2}^{13} + 12 T_{2}^{12} + 5 T_{2}^{11} + 94 T_{2}^{10} + 34 T_{2}^{9} + 375 T_{2}^{8} + \cdots + 9 Copy content Toggle raw display
T514+2T513+26T512+32T511+429T510+507T59++62500 T_{5}^{14} + 2 T_{5}^{13} + 26 T_{5}^{12} + 32 T_{5}^{11} + 429 T_{5}^{10} + 507 T_{5}^{9} + \cdots + 62500 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T14+T13++9 T^{14} + T^{13} + \cdots + 9 Copy content Toggle raw display
33 (T2+T+1)7 (T^{2} + T + 1)^{7} Copy content Toggle raw display
55 T14+2T13++62500 T^{14} + 2 T^{13} + \cdots + 62500 Copy content Toggle raw display
77 (T77T6+167)2 (T^{7} - 7 T^{6} + \cdots - 167)^{2} Copy content Toggle raw display
1111 (T+1)14 (T + 1)^{14} Copy content Toggle raw display
1313 T14+8T13++400 T^{14} + 8 T^{13} + \cdots + 400 Copy content Toggle raw display
1717 T14+9T13++242064 T^{14} + 9 T^{13} + \cdots + 242064 Copy content Toggle raw display
1919 T14++893871739 T^{14} + \cdots + 893871739 Copy content Toggle raw display
2323 T14+4T13++24964 T^{14} + 4 T^{13} + \cdots + 24964 Copy content Toggle raw display
2929 T14+18T13++4080400 T^{14} + 18 T^{13} + \cdots + 4080400 Copy content Toggle raw display
3131 (T7+11T6++2272)2 (T^{7} + 11 T^{6} + \cdots + 2272)^{2} Copy content Toggle raw display
3737 (T717T6++25138)2 (T^{7} - 17 T^{6} + \cdots + 25138)^{2} Copy content Toggle raw display
4141 T14+11T13++25887744 T^{14} + 11 T^{13} + \cdots + 25887744 Copy content Toggle raw display
4343 T14++36773431696 T^{14} + \cdots + 36773431696 Copy content Toggle raw display
4747 T14++521756964 T^{14} + \cdots + 521756964 Copy content Toggle raw display
5353 T14++566059264 T^{14} + \cdots + 566059264 Copy content Toggle raw display
5959 T14++1139737600 T^{14} + \cdots + 1139737600 Copy content Toggle raw display
6161 T14++20194683664 T^{14} + \cdots + 20194683664 Copy content Toggle raw display
6767 T14++143747139600 T^{14} + \cdots + 143747139600 Copy content Toggle raw display
7171 T14++22895650803600 T^{14} + \cdots + 22895650803600 Copy content Toggle raw display
7373 T14++67602080016 T^{14} + \cdots + 67602080016 Copy content Toggle raw display
7979 T14++3037686466816 T^{14} + \cdots + 3037686466816 Copy content Toggle raw display
8383 (T79T6++316262)2 (T^{7} - 9 T^{6} + \cdots + 316262)^{2} Copy content Toggle raw display
8989 T14++1942042919184 T^{14} + \cdots + 1942042919184 Copy content Toggle raw display
9797 T14++5784058809 T^{14} + \cdots + 5784058809 Copy content Toggle raw display
show more
show less