Properties

Label 2-627-1.1-c3-0-39
Degree $2$
Conductor $627$
Sign $-1$
Analytic cond. $36.9941$
Root an. cond. $6.08228$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.92·2-s − 3·3-s + 7.43·4-s − 7.76·5-s + 11.7·6-s + 18.1·7-s + 2.23·8-s + 9·9-s + 30.4·10-s + 11·11-s − 22.2·12-s − 74.3·13-s − 71.2·14-s + 23.2·15-s − 68.2·16-s − 43.7·17-s − 35.3·18-s − 19·19-s − 57.6·20-s − 54.4·21-s − 43.2·22-s + 154.·23-s − 6.69·24-s − 64.7·25-s + 292.·26-s − 27·27-s + 134.·28-s + ⋯
L(s)  = 1  − 1.38·2-s − 0.577·3-s + 0.928·4-s − 0.694·5-s + 0.801·6-s + 0.979·7-s + 0.0986·8-s + 0.333·9-s + 0.964·10-s + 0.301·11-s − 0.536·12-s − 1.58·13-s − 1.36·14-s + 0.400·15-s − 1.06·16-s − 0.623·17-s − 0.462·18-s − 0.229·19-s − 0.644·20-s − 0.565·21-s − 0.418·22-s + 1.40·23-s − 0.0569·24-s − 0.517·25-s + 2.20·26-s − 0.192·27-s + 0.909·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(627\)    =    \(3 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(36.9941\)
Root analytic conductor: \(6.08228\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 627,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 - 11T \)
19 \( 1 + 19T \)
good2 \( 1 + 3.92T + 8T^{2} \)
5 \( 1 + 7.76T + 125T^{2} \)
7 \( 1 - 18.1T + 343T^{2} \)
13 \( 1 + 74.3T + 2.19e3T^{2} \)
17 \( 1 + 43.7T + 4.91e3T^{2} \)
23 \( 1 - 154.T + 1.21e4T^{2} \)
29 \( 1 - 226.T + 2.43e4T^{2} \)
31 \( 1 + 23.7T + 2.97e4T^{2} \)
37 \( 1 - 177.T + 5.06e4T^{2} \)
41 \( 1 - 362.T + 6.89e4T^{2} \)
43 \( 1 + 65.2T + 7.95e4T^{2} \)
47 \( 1 + 102.T + 1.03e5T^{2} \)
53 \( 1 - 266.T + 1.48e5T^{2} \)
59 \( 1 + 798.T + 2.05e5T^{2} \)
61 \( 1 + 116.T + 2.26e5T^{2} \)
67 \( 1 - 250.T + 3.00e5T^{2} \)
71 \( 1 + 39.8T + 3.57e5T^{2} \)
73 \( 1 - 304.T + 3.89e5T^{2} \)
79 \( 1 - 669.T + 4.93e5T^{2} \)
83 \( 1 + 1.06e3T + 5.71e5T^{2} \)
89 \( 1 - 1.17e3T + 7.04e5T^{2} \)
97 \( 1 + 1.23e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.698928966328295298031823075529, −8.927569632156014826950654277347, −7.962099161754669112063721262948, −7.43582731705345550992645774001, −6.55806573196990986105427916760, −4.96264888011349662314614636360, −4.39133617228279752323850098610, −2.44500900421885966693031233678, −1.12674349783297304224821794578, 0, 1.12674349783297304224821794578, 2.44500900421885966693031233678, 4.39133617228279752323850098610, 4.96264888011349662314614636360, 6.55806573196990986105427916760, 7.43582731705345550992645774001, 7.962099161754669112063721262948, 8.927569632156014826950654277347, 9.698928966328295298031823075529

Graph of the $Z$-function along the critical line