Properties

Label 627.4.a.c
Level $627$
Weight $4$
Character orbit 627.a
Self dual yes
Analytic conductor $36.994$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [627,4,Mod(1,627)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(627, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("627.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 627 = 3 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 627.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.9941975736\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 63x^{8} - 11x^{7} + 1335x^{6} + 424x^{5} - 10579x^{4} - 4725x^{3} + 21298x^{2} + 7896x - 216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 3 q^{3} + (\beta_{2} + 5) q^{4} + (\beta_{7} - 2) q^{5} + 3 \beta_1 q^{6} + ( - \beta_{9} - \beta_{8} - \beta_1 - 3) q^{7} + ( - \beta_{8} - \beta_{7} - \beta_{6} + \cdots - 3) q^{8}+ \cdots + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 30 q^{3} + 46 q^{4} - 21 q^{5} - 38 q^{7} - 33 q^{8} + 90 q^{9} - 38 q^{10} + 110 q^{11} - 138 q^{12} - 94 q^{13} + 79 q^{14} + 63 q^{15} + 214 q^{16} - 145 q^{17} - 190 q^{19} - 125 q^{20} + 114 q^{21}+ \cdots + 990 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - 63x^{8} - 11x^{7} + 1335x^{6} + 424x^{5} - 10579x^{4} - 4725x^{3} + 21298x^{2} + 7896x - 216 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 353 \nu^{9} - 9729 \nu^{8} - 48022 \nu^{7} + 543763 \nu^{6} + 1557316 \nu^{5} - 8637956 \nu^{4} + \cdots - 16261016 ) / 2577760 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 1519 \nu^{9} - 42113 \nu^{8} + 77026 \nu^{7} + 1515811 \nu^{6} + 473332 \nu^{5} + \cdots + 163634088 ) / 10311040 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 17939 \nu^{9} + 9453 \nu^{8} - 1018266 \nu^{7} - 656311 \nu^{6} + 18048588 \nu^{5} + \cdots + 256280952 ) / 10311040 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3697 \nu^{9} - 6961 \nu^{8} - 216318 \nu^{7} + 327587 \nu^{6} + 4220724 \nu^{5} - 4642364 \nu^{4} + \cdots - 5852184 ) / 1288880 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 37823 \nu^{9} - 1839 \nu^{8} - 2474562 \nu^{7} - 273587 \nu^{6} + 54422956 \nu^{5} + \cdots + 197129944 ) / 10311040 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 65987 \nu^{9} + 18611 \nu^{8} + 4013018 \nu^{7} - 172057 \nu^{6} - 81959484 \nu^{5} + \cdots - 246289656 ) / 10311040 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 67719 \nu^{9} - 7927 \nu^{8} - 4270546 \nu^{7} - 66331 \nu^{6} + 90885708 \nu^{5} + \cdots + 254221592 ) / 10311040 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 13 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{8} + \beta_{7} + \beta_{6} - \beta_{3} + 21\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{9} + 3\beta_{8} + \beta_{6} + 2\beta_{5} + \beta_{4} - \beta_{3} + 24\beta_{2} + 7\beta _1 + 267 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 12\beta_{9} + 42\beta_{8} + 26\beta_{7} + 35\beta_{6} + 4\beta_{4} - 38\beta_{3} + 4\beta_{2} + 493\beta _1 + 118 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 102 \beta_{9} + 153 \beta_{8} + \beta_{7} + 65 \beta_{6} + 76 \beta_{5} + 34 \beta_{4} - 59 \beta_{3} + \cdots + 6038 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 570 \beta_{9} + 1384 \beta_{8} + 593 \beta_{7} + 1066 \beta_{6} + 42 \beta_{5} + 189 \beta_{4} + \cdots + 4301 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 3766 \beta_{9} + 5704 \beta_{8} + 173 \beta_{7} + 2619 \beta_{6} + 2362 \beta_{5} + 957 \beta_{4} + \cdots + 144330 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 20216 \beta_{9} + 42080 \beta_{8} + 13351 \beta_{7} + 31291 \beta_{6} + 2682 \beta_{5} + 6537 \beta_{4} + \cdots + 152653 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.37532
4.25249
3.92833
1.64270
0.0255987
−0.392328
−1.88234
−3.40034
−4.64037
−4.90906
−5.37532 −3.00000 20.8941 −2.13401 16.1260 −36.7735 −69.3098 9.00000 11.4710
1.2 −4.25249 −3.00000 10.0837 11.4796 12.7575 8.02199 −8.86095 9.00000 −48.8167
1.3 −3.92833 −3.00000 7.43177 −7.76216 11.7850 18.1402 2.23220 9.00000 30.4923
1.4 −1.64270 −3.00000 −5.30154 −17.0227 4.92810 −23.3126 21.8504 9.00000 27.9632
1.5 −0.0255987 −3.00000 −7.99934 19.2106 0.0767961 −4.59698 0.409562 9.00000 −0.491766
1.6 0.392328 −3.00000 −7.84608 −15.0745 −1.17698 8.17399 −6.21687 9.00000 −5.91416
1.7 1.88234 −3.00000 −4.45678 −0.0442548 −5.64703 6.46402 −23.4479 9.00000 −0.0833027
1.8 3.40034 −3.00000 3.56234 6.34288 −10.2010 −5.18031 −15.0896 9.00000 21.5680
1.9 4.64037 −3.00000 13.5330 −16.1277 −13.9211 20.8330 25.6751 9.00000 −74.8384
1.10 4.90906 −3.00000 16.0989 0.132381 −14.7272 −29.7697 39.7578 9.00000 0.649867
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.10
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 627.4.a.c 10
3.b odd 2 1 1881.4.a.d 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
627.4.a.c 10 1.a even 1 1 trivial
1881.4.a.d 10 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{10} - 63 T_{2}^{8} + 11 T_{2}^{7} + 1335 T_{2}^{6} - 424 T_{2}^{5} - 10579 T_{2}^{4} + 4725 T_{2}^{3} + \cdots - 216 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(627))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} - 63 T^{8} + \cdots - 216 \) Copy content Toggle raw display
$3$ \( (T + 3)^{10} \) Copy content Toggle raw display
$5$ \( T^{10} + 21 T^{9} + \cdots + 561776 \) Copy content Toggle raw display
$7$ \( T^{10} + \cdots - 97351091856 \) Copy content Toggle raw display
$11$ \( (T - 11)^{10} \) Copy content Toggle raw display
$13$ \( T^{10} + \cdots + 9703633884672 \) Copy content Toggle raw display
$17$ \( T^{10} + \cdots + 68\!\cdots\!28 \) Copy content Toggle raw display
$19$ \( (T + 19)^{10} \) Copy content Toggle raw display
$23$ \( T^{10} + \cdots + 20\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{10} + \cdots - 56\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{10} + \cdots - 33\!\cdots\!64 \) Copy content Toggle raw display
$37$ \( T^{10} + \cdots + 56\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{10} + \cdots - 17\!\cdots\!88 \) Copy content Toggle raw display
$43$ \( T^{10} + \cdots - 16\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{10} + \cdots - 23\!\cdots\!32 \) Copy content Toggle raw display
$53$ \( T^{10} + \cdots - 21\!\cdots\!92 \) Copy content Toggle raw display
$59$ \( T^{10} + \cdots + 80\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{10} + \cdots - 56\!\cdots\!68 \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots + 86\!\cdots\!32 \) Copy content Toggle raw display
$71$ \( T^{10} + \cdots - 93\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{10} + \cdots - 18\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( T^{10} + \cdots - 19\!\cdots\!20 \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots - 11\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( T^{10} + \cdots - 53\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots - 50\!\cdots\!64 \) Copy content Toggle raw display
show more
show less