L(s) = 1 | + 3.22i·2-s + (−2.32 − 1.89i)3-s − 6.39·4-s + (−4.79 + 2.76i)5-s + (6.10 − 7.50i)6-s + (−6.99 − 0.206i)7-s − 7.70i·8-s + (1.82 + 8.81i)9-s + (−8.91 − 15.4i)10-s + (15.3 + 8.84i)11-s + (14.8 + 12.1i)12-s + (2.03 − 3.52i)13-s + (0.665 − 22.5i)14-s + (16.3 + 2.63i)15-s − 0.715·16-s + (−14.3 + 8.27i)17-s + ⋯ |
L(s) = 1 | + 1.61i·2-s + (−0.775 − 0.631i)3-s − 1.59·4-s + (−0.958 + 0.553i)5-s + (1.01 − 1.25i)6-s + (−0.999 − 0.0294i)7-s − 0.963i·8-s + (0.203 + 0.979i)9-s + (−0.891 − 1.54i)10-s + (1.39 + 0.804i)11-s + (1.23 + 1.00i)12-s + (0.156 − 0.271i)13-s + (0.0475 − 1.61i)14-s + (1.09 + 0.175i)15-s − 0.0447·16-s + (−0.843 + 0.486i)17-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(−0.915+0.401i)Λ(3−s)
Λ(s)=(=(63s/2ΓC(s+1)L(s)(−0.915+0.401i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
−0.915+0.401i
|
Analytic conductor: |
1.71662 |
Root analytic conductor: |
1.31020 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :1), −0.915+0.401i)
|
Particular Values
L(23) |
≈ |
0.0982891−0.469184i |
L(21) |
≈ |
0.0982891−0.469184i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(2.32+1.89i)T |
| 7 | 1+(6.99+0.206i)T |
good | 2 | 1−3.22iT−4T2 |
| 5 | 1+(4.79−2.76i)T+(12.5−21.6i)T2 |
| 11 | 1+(−15.3−8.84i)T+(60.5+104.i)T2 |
| 13 | 1+(−2.03+3.52i)T+(−84.5−146.i)T2 |
| 17 | 1+(14.3−8.27i)T+(144.5−250.i)T2 |
| 19 | 1+(3.92−6.79i)T+(−180.5−312.i)T2 |
| 23 | 1+(−8.71+5.03i)T+(264.5−458.i)T2 |
| 29 | 1+(39.9−23.0i)T+(420.5−728.i)T2 |
| 31 | 1−29.6T+961T2 |
| 37 | 1+(−15.5+27.0i)T+(−684.5−1.18e3i)T2 |
| 41 | 1+(−27.8−16.0i)T+(840.5+1.45e3i)T2 |
| 43 | 1+(−3.35−5.80i)T+(−924.5+1.60e3i)T2 |
| 47 | 1−16.4iT−2.20e3T2 |
| 53 | 1+(32.5−18.8i)T+(1.40e3−2.43e3i)T2 |
| 59 | 1−95.0iT−3.48e3T2 |
| 61 | 1+73.7T+3.72e3T2 |
| 67 | 1+12.1T+4.48e3T2 |
| 71 | 1−20.0iT−5.04e3T2 |
| 73 | 1+(11.4+19.9i)T+(−2.66e3+4.61e3i)T2 |
| 79 | 1−138.T+6.24e3T2 |
| 83 | 1+(−13.6+7.90i)T+(3.44e3−5.96e3i)T2 |
| 89 | 1+(46.9+27.1i)T+(3.96e3+6.85e3i)T2 |
| 97 | 1+(−86.1−149.i)T+(−4.70e3+8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.42545571160667637399947059231, −14.64084946730940203716364168577, −13.27260012910896755059679621080, −12.21544173031453596940561468827, −10.94514640011731605373566170680, −9.177291351558186116172600023674, −7.65306353522304996048005953645, −6.84198526327876333673349553119, −6.08671492236474833199556270739, −4.23145641032519137339379246079,
0.49399152011033700893973996607, 3.52656214496322384633372660971, 4.41644864369809905289471243342, 6.46593421671320551856048375501, 8.944481569715082385164913646858, 9.617743818522722925979577161089, 11.09873643314263035563508126734, 11.62539484095168217076057378175, 12.47301022923135225109538062794, 13.59425372436257652903050226272