Properties

Label 63.3.j.b.23.10
Level $63$
Weight $3$
Character 63.23
Analytic conductor $1.717$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,3,Mod(11,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.11");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 63.j (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.71662566547\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.10
Character \(\chi\) \(=\) 63.23
Dual form 63.3.j.b.11.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.22356i q^{2} +(-2.32685 - 1.89361i) q^{3} -6.39137 q^{4} +(-4.79167 + 2.76647i) q^{5} +(6.10417 - 7.50076i) q^{6} +(-6.99696 - 0.206413i) q^{7} -7.70873i q^{8} +(1.82848 + 8.81230i) q^{9} +O(q^{10})\) \(q+3.22356i q^{2} +(-2.32685 - 1.89361i) q^{3} -6.39137 q^{4} +(-4.79167 + 2.76647i) q^{5} +(6.10417 - 7.50076i) q^{6} +(-6.99696 - 0.206413i) q^{7} -7.70873i q^{8} +(1.82848 + 8.81230i) q^{9} +(-8.91790 - 15.4463i) q^{10} +(15.3189 + 8.84435i) q^{11} +(14.8718 + 12.1028i) q^{12} +(2.03775 - 3.52949i) q^{13} +(0.665386 - 22.5551i) q^{14} +(16.3881 + 2.63638i) q^{15} -0.715882 q^{16} +(-14.3348 + 8.27617i) q^{17} +(-28.4070 + 5.89424i) q^{18} +(-3.92096 + 6.79130i) q^{19} +(30.6253 - 17.6815i) q^{20} +(15.8900 + 13.7298i) q^{21} +(-28.5103 + 49.3813i) q^{22} +(8.71877 - 5.03378i) q^{23} +(-14.5973 + 17.9371i) q^{24} +(2.80674 - 4.86141i) q^{25} +(11.3775 + 6.56882i) q^{26} +(12.4324 - 23.9674i) q^{27} +(44.7201 + 1.31926i) q^{28} +(-39.9040 + 23.0386i) q^{29} +(-8.49854 + 52.8282i) q^{30} +29.6235 q^{31} -33.1426i q^{32} +(-18.8970 - 49.5874i) q^{33} +(-26.6788 - 46.2090i) q^{34} +(34.0981 - 18.3678i) q^{35} +(-11.6865 - 56.3227i) q^{36} +(15.5948 - 27.0110i) q^{37} +(-21.8922 - 12.6395i) q^{38} +(-11.4250 + 4.35389i) q^{39} +(21.3260 + 36.9377i) q^{40} +(27.8184 + 16.0609i) q^{41} +(-44.2589 + 51.2225i) q^{42} +(3.35243 + 5.80658i) q^{43} +(-97.9085 - 56.5275i) q^{44} +(-33.1405 - 37.1672i) q^{45} +(16.2267 + 28.1055i) q^{46} +16.4402i q^{47} +(1.66575 + 1.35560i) q^{48} +(48.9148 + 2.88853i) q^{49} +(15.6711 + 9.04769i) q^{50} +(49.0267 + 7.88699i) q^{51} +(-13.0240 + 22.5583i) q^{52} +(-32.5897 + 18.8157i) q^{53} +(77.2603 + 40.0768i) q^{54} -97.8706 q^{55} +(-1.59118 + 53.9377i) q^{56} +(21.9836 - 8.37759i) q^{57} +(-74.2663 - 128.633i) q^{58} +95.0557i q^{59} +(-104.743 - 16.8501i) q^{60} -73.7679 q^{61} +95.4932i q^{62} +(-10.9749 - 62.0367i) q^{63} +103.974 q^{64} +22.5495i q^{65} +(159.848 - 60.9156i) q^{66} -12.1909 q^{67} +(91.6187 - 52.8961i) q^{68} +(-29.8193 - 4.79707i) q^{69} +(59.2099 + 109.918i) q^{70} +20.0140i q^{71} +(67.9317 - 14.0953i) q^{72} +(-11.4932 - 19.9068i) q^{73} +(87.0715 + 50.2708i) q^{74} +(-15.7365 + 5.99692i) q^{75} +(25.0603 - 43.4057i) q^{76} +(-105.360 - 65.0455i) q^{77} +(-14.0351 - 36.8293i) q^{78} +138.880 q^{79} +(3.43027 - 1.98047i) q^{80} +(-74.3133 + 32.2263i) q^{81} +(-51.7735 + 89.6743i) q^{82} +(13.6928 - 7.90552i) q^{83} +(-101.559 - 87.7522i) q^{84} +(45.7916 - 79.3134i) q^{85} +(-18.7179 + 10.8068i) q^{86} +(136.477 + 21.9552i) q^{87} +(68.1787 - 118.089i) q^{88} +(-46.9444 - 27.1034i) q^{89} +(119.811 - 106.830i) q^{90} +(-14.9866 + 24.2750i) q^{91} +(-55.7249 + 32.1728i) q^{92} +(-68.9294 - 56.0953i) q^{93} -52.9962 q^{94} -43.3889i q^{95} +(-62.7592 + 77.1180i) q^{96} +(86.1189 + 149.162i) q^{97} +(-9.31136 + 157.680i) q^{98} +(-49.9287 + 151.166i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 19 q^{3} - 24 q^{4} + 12 q^{5} - 8 q^{6} - 37 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 19 q^{3} - 24 q^{4} + 12 q^{5} - 8 q^{6} - 37 q^{9} + 25 q^{10} + 24 q^{11} + 40 q^{12} - 18 q^{13} - 60 q^{14} + 53 q^{15} - 24 q^{16} - 6 q^{17} + 40 q^{18} + 3 q^{19} - 39 q^{20} - 11 q^{21} - 59 q^{22} + 81 q^{23} + 126 q^{24} + 57 q^{25} + 3 q^{26} - 97 q^{27} + 34 q^{28} - 63 q^{29} - 38 q^{30} + 58 q^{31} - 4 q^{33} - 99 q^{34} + 27 q^{35} + 76 q^{36} - 20 q^{37} - 48 q^{38} - 76 q^{39} - 105 q^{40} - 51 q^{41} + 68 q^{42} + 65 q^{43} - 54 q^{44} - 214 q^{45} + 75 q^{46} - 113 q^{48} + 4 q^{49} + 63 q^{50} + 141 q^{51} - 46 q^{52} + 63 q^{53} + 433 q^{54} - 100 q^{55} + 192 q^{56} + 224 q^{57} + 40 q^{58} - 482 q^{60} - 156 q^{61} + 19 q^{63} + 106 q^{64} + 61 q^{66} + 264 q^{67} + 27 q^{68} - 297 q^{69} + 236 q^{70} - 222 q^{72} + q^{73} + 342 q^{74} - 296 q^{75} + 233 q^{76} - 531 q^{77} - 440 q^{78} - 280 q^{79} - 96 q^{80} - 169 q^{81} - 157 q^{82} + 255 q^{83} - 13 q^{84} + 102 q^{85} + 504 q^{86} + 704 q^{87} + 408 q^{88} + 720 q^{89} + 418 q^{90} - 70 q^{91} - 1239 q^{92} - 36 q^{93} - 522 q^{94} - 397 q^{96} + 178 q^{97} - 483 q^{98} - 103 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.22356i 1.61178i 0.592064 + 0.805891i \(0.298313\pi\)
−0.592064 + 0.805891i \(0.701687\pi\)
\(3\) −2.32685 1.89361i −0.775617 0.631203i
\(4\) −6.39137 −1.59784
\(5\) −4.79167 + 2.76647i −0.958334 + 0.553294i −0.895660 0.444740i \(-0.853296\pi\)
−0.0626741 + 0.998034i \(0.519963\pi\)
\(6\) 6.10417 7.50076i 1.01736 1.25013i
\(7\) −6.99696 0.206413i −0.999565 0.0294876i
\(8\) 7.70873i 0.963591i
\(9\) 1.82848 + 8.81230i 0.203165 + 0.979145i
\(10\) −8.91790 15.4463i −0.891790 1.54463i
\(11\) 15.3189 + 8.84435i 1.39262 + 0.804032i 0.993605 0.112911i \(-0.0360176\pi\)
0.399018 + 0.916943i \(0.369351\pi\)
\(12\) 14.8718 + 12.1028i 1.23931 + 1.00856i
\(13\) 2.03775 3.52949i 0.156750 0.271499i −0.776945 0.629569i \(-0.783232\pi\)
0.933695 + 0.358070i \(0.116565\pi\)
\(14\) 0.665386 22.5551i 0.0475276 1.61108i
\(15\) 16.3881 + 2.63638i 1.09254 + 0.175759i
\(16\) −0.715882 −0.0447426
\(17\) −14.3348 + 8.27617i −0.843221 + 0.486834i −0.858358 0.513052i \(-0.828515\pi\)
0.0151370 + 0.999885i \(0.495182\pi\)
\(18\) −28.4070 + 5.89424i −1.57817 + 0.327458i
\(19\) −3.92096 + 6.79130i −0.206366 + 0.357437i −0.950567 0.310519i \(-0.899497\pi\)
0.744201 + 0.667956i \(0.232830\pi\)
\(20\) 30.6253 17.6815i 1.53127 0.884077i
\(21\) 15.8900 + 13.7298i 0.756668 + 0.653800i
\(22\) −28.5103 + 49.3813i −1.29592 + 2.24461i
\(23\) 8.71877 5.03378i 0.379077 0.218860i −0.298340 0.954460i \(-0.596433\pi\)
0.677417 + 0.735600i \(0.263099\pi\)
\(24\) −14.5973 + 17.9371i −0.608222 + 0.747378i
\(25\) 2.80674 4.86141i 0.112269 0.194456i
\(26\) 11.3775 + 6.56882i 0.437597 + 0.252647i
\(27\) 12.4324 23.9674i 0.460461 0.887680i
\(28\) 44.7201 + 1.31926i 1.59715 + 0.0471165i
\(29\) −39.9040 + 23.0386i −1.37600 + 0.794434i −0.991675 0.128764i \(-0.958899\pi\)
−0.384324 + 0.923198i \(0.625566\pi\)
\(30\) −8.49854 + 52.8282i −0.283285 + 1.76094i
\(31\) 29.6235 0.955596 0.477798 0.878470i \(-0.341435\pi\)
0.477798 + 0.878470i \(0.341435\pi\)
\(32\) 33.1426i 1.03571i
\(33\) −18.8970 49.5874i −0.572636 1.50265i
\(34\) −26.6788 46.2090i −0.784670 1.35909i
\(35\) 34.0981 18.3678i 0.974233 0.524795i
\(36\) −11.6865 56.3227i −0.324626 1.56452i
\(37\) 15.5948 27.0110i 0.421481 0.730026i −0.574604 0.818432i \(-0.694844\pi\)
0.996085 + 0.0884059i \(0.0281772\pi\)
\(38\) −21.8922 12.6395i −0.576110 0.332617i
\(39\) −11.4250 + 4.35389i −0.292949 + 0.111638i
\(40\) 21.3260 + 36.9377i 0.533150 + 0.923442i
\(41\) 27.8184 + 16.0609i 0.678497 + 0.391730i 0.799288 0.600948i \(-0.205210\pi\)
−0.120792 + 0.992678i \(0.538543\pi\)
\(42\) −44.2589 + 51.2225i −1.05378 + 1.21958i
\(43\) 3.35243 + 5.80658i 0.0779635 + 0.135037i 0.902371 0.430960i \(-0.141825\pi\)
−0.824408 + 0.565997i \(0.808492\pi\)
\(44\) −97.9085 56.5275i −2.22519 1.28472i
\(45\) −33.1405 37.1672i −0.736455 0.825937i
\(46\) 16.2267 + 28.1055i 0.352755 + 0.610990i
\(47\) 16.4402i 0.349792i 0.984587 + 0.174896i \(0.0559590\pi\)
−0.984587 + 0.174896i \(0.944041\pi\)
\(48\) 1.66575 + 1.35560i 0.0347032 + 0.0282417i
\(49\) 48.9148 + 2.88853i 0.998261 + 0.0589496i
\(50\) 15.6711 + 9.04769i 0.313421 + 0.180954i
\(51\) 49.0267 + 7.88699i 0.961308 + 0.154647i
\(52\) −13.0240 + 22.5583i −0.250462 + 0.433813i
\(53\) −32.5897 + 18.8157i −0.614900 + 0.355013i −0.774881 0.632108i \(-0.782190\pi\)
0.159981 + 0.987120i \(0.448857\pi\)
\(54\) 77.2603 + 40.0768i 1.43075 + 0.742163i
\(55\) −97.8706 −1.77946
\(56\) −1.59118 + 53.9377i −0.0284140 + 0.963172i
\(57\) 21.9836 8.37759i 0.385676 0.146975i
\(58\) −74.2663 128.633i −1.28045 2.21781i
\(59\) 95.0557i 1.61111i 0.592519 + 0.805557i \(0.298134\pi\)
−0.592519 + 0.805557i \(0.701866\pi\)
\(60\) −104.743 16.8501i −1.74571 0.280835i
\(61\) −73.7679 −1.20931 −0.604655 0.796488i \(-0.706689\pi\)
−0.604655 + 0.796488i \(0.706689\pi\)
\(62\) 95.4932i 1.54021i
\(63\) −10.9749 62.0367i −0.174204 0.984710i
\(64\) 103.974 1.62459
\(65\) 22.5495i 0.346916i
\(66\) 159.848 60.9156i 2.42194 0.922964i
\(67\) −12.1909 −0.181954 −0.0909769 0.995853i \(-0.528999\pi\)
−0.0909769 + 0.995853i \(0.528999\pi\)
\(68\) 91.6187 52.8961i 1.34733 0.777883i
\(69\) −29.8193 4.79707i −0.432164 0.0695228i
\(70\) 59.2099 + 109.918i 0.845855 + 1.57025i
\(71\) 20.0140i 0.281887i 0.990018 + 0.140944i \(0.0450136\pi\)
−0.990018 + 0.140944i \(0.954986\pi\)
\(72\) 67.9317 14.0953i 0.943495 0.195768i
\(73\) −11.4932 19.9068i −0.157441 0.272696i 0.776504 0.630112i \(-0.216991\pi\)
−0.933945 + 0.357416i \(0.883658\pi\)
\(74\) 87.0715 + 50.2708i 1.17664 + 0.679335i
\(75\) −15.7365 + 5.99692i −0.209820 + 0.0799589i
\(76\) 25.0603 43.4057i 0.329741 0.571128i
\(77\) −105.360 65.0455i −1.36831 0.844747i
\(78\) −14.0351 36.8293i −0.179937 0.472170i
\(79\) 138.880 1.75798 0.878988 0.476844i \(-0.158219\pi\)
0.878988 + 0.476844i \(0.158219\pi\)
\(80\) 3.43027 1.98047i 0.0428784 0.0247559i
\(81\) −74.3133 + 32.2263i −0.917448 + 0.397856i
\(82\) −51.7735 + 89.6743i −0.631384 + 1.09359i
\(83\) 13.6928 7.90552i 0.164973 0.0952472i −0.415240 0.909712i \(-0.636303\pi\)
0.580213 + 0.814465i \(0.302969\pi\)
\(84\) −101.559 87.7522i −1.20904 1.04467i
\(85\) 45.7916 79.3134i 0.538725 0.933099i
\(86\) −18.7179 + 10.8068i −0.217650 + 0.125660i
\(87\) 136.477 + 21.9552i 1.56870 + 0.252359i
\(88\) 68.1787 118.089i 0.774758 1.34192i
\(89\) −46.9444 27.1034i −0.527466 0.304532i 0.212518 0.977157i \(-0.431834\pi\)
−0.739984 + 0.672625i \(0.765167\pi\)
\(90\) 119.811 106.830i 1.33123 1.18701i
\(91\) −14.9866 + 24.2750i −0.164688 + 0.266759i
\(92\) −55.7249 + 32.1728i −0.605705 + 0.349704i
\(93\) −68.9294 56.0953i −0.741177 0.603175i
\(94\) −52.9962 −0.563789
\(95\) 43.3889i 0.456725i
\(96\) −62.7592 + 77.1180i −0.653741 + 0.803312i
\(97\) 86.1189 + 149.162i 0.887823 + 1.53776i 0.842443 + 0.538785i \(0.181117\pi\)
0.0453802 + 0.998970i \(0.485550\pi\)
\(98\) −9.31136 + 157.680i −0.0950139 + 1.60898i
\(99\) −49.9287 + 151.166i −0.504331 + 1.52693i
\(100\) −17.9389 + 31.0710i −0.179389 + 0.310710i
\(101\) −14.9975 8.65880i −0.148490 0.0857307i 0.423914 0.905702i \(-0.360656\pi\)
−0.572404 + 0.819972i \(0.693989\pi\)
\(102\) −25.4242 + 158.041i −0.249257 + 1.54942i
\(103\) 13.7999 + 23.9021i 0.133979 + 0.232059i 0.925207 0.379463i \(-0.123891\pi\)
−0.791228 + 0.611521i \(0.790558\pi\)
\(104\) −27.2079 15.7085i −0.261614 0.151043i
\(105\) −114.123 21.8294i −1.08688 0.207899i
\(106\) −60.6535 105.055i −0.572203 0.991085i
\(107\) −106.089 61.2506i −0.991488 0.572436i −0.0857691 0.996315i \(-0.527335\pi\)
−0.905719 + 0.423879i \(0.860668\pi\)
\(108\) −79.4603 + 153.184i −0.735744 + 1.41837i
\(109\) −17.0725 29.5705i −0.156629 0.271289i 0.777022 0.629473i \(-0.216729\pi\)
−0.933651 + 0.358184i \(0.883396\pi\)
\(110\) 315.492i 2.86811i
\(111\) −87.4350 + 33.3201i −0.787702 + 0.300181i
\(112\) 5.00900 + 0.147768i 0.0447232 + 0.00131935i
\(113\) 67.4250 + 38.9278i 0.596681 + 0.344494i 0.767735 0.640768i \(-0.221384\pi\)
−0.171054 + 0.985262i \(0.554717\pi\)
\(114\) 27.0057 + 70.8654i 0.236892 + 0.621626i
\(115\) −27.8516 + 48.2405i −0.242188 + 0.419482i
\(116\) 255.041 147.248i 2.19863 1.26938i
\(117\) 34.8289 + 11.5037i 0.297683 + 0.0983218i
\(118\) −306.418 −2.59676
\(119\) 102.008 54.9491i 0.857210 0.461757i
\(120\) 20.3231 126.332i 0.169360 1.05276i
\(121\) 95.9449 + 166.182i 0.792933 + 1.37340i
\(122\) 237.795i 1.94914i
\(123\) −34.3161 90.0486i −0.278992 0.732102i
\(124\) −189.335 −1.52689
\(125\) 107.265i 0.858117i
\(126\) 199.979 35.3781i 1.58714 0.280779i
\(127\) 14.0742 0.110821 0.0554103 0.998464i \(-0.482353\pi\)
0.0554103 + 0.998464i \(0.482353\pi\)
\(128\) 202.596i 1.58278i
\(129\) 3.19479 19.8593i 0.0247658 0.153948i
\(130\) −72.6898 −0.559152
\(131\) 19.2863 11.1349i 0.147223 0.0849995i −0.424579 0.905391i \(-0.639578\pi\)
0.571802 + 0.820391i \(0.306244\pi\)
\(132\) 120.778 + 316.932i 0.914982 + 2.40100i
\(133\) 28.8366 46.7091i 0.216816 0.351196i
\(134\) 39.2982i 0.293270i
\(135\) 6.73286 + 149.238i 0.0498731 + 1.10546i
\(136\) 63.7988 + 110.503i 0.469109 + 0.812520i
\(137\) 32.1175 + 18.5430i 0.234434 + 0.135351i 0.612616 0.790381i \(-0.290117\pi\)
−0.378182 + 0.925731i \(0.623451\pi\)
\(138\) 15.4637 96.1245i 0.112056 0.696554i
\(139\) 70.5358 122.172i 0.507451 0.878932i −0.492511 0.870306i \(-0.663921\pi\)
0.999963 0.00862568i \(-0.00274567\pi\)
\(140\) −217.934 + 117.396i −1.55667 + 0.838539i
\(141\) 31.1314 38.2540i 0.220790 0.271305i
\(142\) −64.5164 −0.454341
\(143\) 62.4320 36.0451i 0.436587 0.252064i
\(144\) −1.30898 6.30857i −0.00909014 0.0438095i
\(145\) 127.471 220.787i 0.879111 1.52267i
\(146\) 64.1710 37.0491i 0.439527 0.253761i
\(147\) −108.348 99.3467i −0.737060 0.675828i
\(148\) −99.6720 + 172.637i −0.673459 + 1.16647i
\(149\) 100.215 57.8590i 0.672582 0.388315i −0.124472 0.992223i \(-0.539724\pi\)
0.797054 + 0.603908i \(0.206390\pi\)
\(150\) −19.3315 50.7275i −0.128876 0.338183i
\(151\) 75.1579 130.177i 0.497734 0.862101i −0.502262 0.864715i \(-0.667499\pi\)
0.999997 + 0.00261420i \(0.000832125\pi\)
\(152\) 52.3523 + 30.2256i 0.344423 + 0.198853i
\(153\) −99.1430 111.189i −0.647993 0.726727i
\(154\) 209.678 339.634i 1.36155 2.20542i
\(155\) −141.946 + 81.9525i −0.915780 + 0.528726i
\(156\) 73.0215 27.8273i 0.468086 0.178380i
\(157\) −274.056 −1.74558 −0.872788 0.488099i \(-0.837691\pi\)
−0.872788 + 0.488099i \(0.837691\pi\)
\(158\) 447.689i 2.83347i
\(159\) 111.461 + 17.9309i 0.701012 + 0.112773i
\(160\) 91.6881 + 158.808i 0.573051 + 0.992553i
\(161\) −62.0439 + 33.4215i −0.385366 + 0.207587i
\(162\) −103.884 239.554i −0.641257 1.47873i
\(163\) −111.326 + 192.822i −0.682981 + 1.18296i 0.291085 + 0.956697i \(0.405984\pi\)
−0.974067 + 0.226261i \(0.927350\pi\)
\(164\) −177.797 102.651i −1.08413 0.625923i
\(165\) 227.730 + 185.329i 1.38018 + 1.12320i
\(166\) 25.4839 + 44.1395i 0.153518 + 0.265900i
\(167\) 62.7878 + 36.2506i 0.375975 + 0.217069i 0.676066 0.736841i \(-0.263684\pi\)
−0.300091 + 0.953911i \(0.597017\pi\)
\(168\) 105.839 122.492i 0.629996 0.729118i
\(169\) 76.1951 + 131.974i 0.450859 + 0.780910i
\(170\) 255.672 + 147.612i 1.50395 + 0.868307i
\(171\) −67.0164 22.1349i −0.391909 0.129444i
\(172\) −21.4266 37.1120i −0.124573 0.215768i
\(173\) 211.173i 1.22066i 0.792149 + 0.610328i \(0.208962\pi\)
−0.792149 + 0.610328i \(0.791038\pi\)
\(174\) −70.7740 + 439.942i −0.406747 + 2.52840i
\(175\) −20.6421 + 33.4357i −0.117955 + 0.191061i
\(176\) −10.9665 6.33151i −0.0623096 0.0359745i
\(177\) 179.998 221.181i 1.01694 1.24961i
\(178\) 87.3695 151.328i 0.490840 0.850160i
\(179\) 69.5967 40.1817i 0.388809 0.224479i −0.292835 0.956163i \(-0.594599\pi\)
0.681644 + 0.731684i \(0.261265\pi\)
\(180\) 211.813 + 237.549i 1.17674 + 1.31972i
\(181\) 122.944 0.679250 0.339625 0.940561i \(-0.389700\pi\)
0.339625 + 0.940561i \(0.389700\pi\)
\(182\) −78.2522 48.3102i −0.429957 0.265441i
\(183\) 171.647 + 139.688i 0.937961 + 0.763320i
\(184\) −38.8041 67.2107i −0.210892 0.365275i
\(185\) 172.570i 0.932811i
\(186\) 180.827 222.199i 0.972187 1.19462i
\(187\) −292.789 −1.56572
\(188\) 105.076i 0.558913i
\(189\) −91.9364 + 165.132i −0.486436 + 0.873716i
\(190\) 139.867 0.736141
\(191\) 355.490i 1.86120i −0.366032 0.930602i \(-0.619284\pi\)
0.366032 0.930602i \(-0.380716\pi\)
\(192\) −241.932 196.886i −1.26006 1.02545i
\(193\) −39.6593 −0.205488 −0.102744 0.994708i \(-0.532762\pi\)
−0.102744 + 0.994708i \(0.532762\pi\)
\(194\) −480.834 + 277.610i −2.47853 + 1.43098i
\(195\) 42.7000 52.4694i 0.218974 0.269074i
\(196\) −312.632 18.4617i −1.59506 0.0941921i
\(197\) 130.634i 0.663119i −0.943434 0.331559i \(-0.892425\pi\)
0.943434 0.331559i \(-0.107575\pi\)
\(198\) −487.294 160.949i −2.46108 0.812871i
\(199\) 108.521 + 187.964i 0.545331 + 0.944540i 0.998586 + 0.0531596i \(0.0169292\pi\)
−0.453255 + 0.891381i \(0.649737\pi\)
\(200\) −37.4753 21.6364i −0.187376 0.108182i
\(201\) 28.3664 + 23.0848i 0.141127 + 0.114850i
\(202\) 27.9122 48.3454i 0.138179 0.239333i
\(203\) 283.962 152.963i 1.39883 0.753513i
\(204\) −313.348 50.4087i −1.53602 0.247101i
\(205\) −177.729 −0.866969
\(206\) −77.0498 + 44.4847i −0.374028 + 0.215945i
\(207\) 60.3014 + 67.6282i 0.291311 + 0.326706i
\(208\) −1.45879 + 2.52670i −0.00701341 + 0.0121476i
\(209\) −120.129 + 69.3566i −0.574781 + 0.331850i
\(210\) 70.3684 367.882i 0.335087 1.75182i
\(211\) 54.6113 94.5895i 0.258821 0.448292i −0.707105 0.707108i \(-0.749999\pi\)
0.965926 + 0.258817i \(0.0833326\pi\)
\(212\) 208.293 120.258i 0.982513 0.567254i
\(213\) 37.8987 46.5696i 0.177928 0.218637i
\(214\) 197.445 341.985i 0.922642 1.59806i
\(215\) −32.1275 18.5488i −0.149430 0.0862736i
\(216\) −184.758 95.8384i −0.855361 0.443696i
\(217\) −207.274 6.11468i −0.955180 0.0281782i
\(218\) 95.3224 55.0344i 0.437259 0.252451i
\(219\) −10.9528 + 68.0839i −0.0500126 + 0.310885i
\(220\) 625.527 2.84330
\(221\) 67.4591i 0.305245i
\(222\) −107.409 281.852i −0.483826 1.26960i
\(223\) −93.3685 161.719i −0.418693 0.725197i 0.577115 0.816663i \(-0.304178\pi\)
−0.995808 + 0.0914653i \(0.970845\pi\)
\(224\) −6.84107 + 231.897i −0.0305405 + 1.03526i
\(225\) 47.9723 + 15.8448i 0.213210 + 0.0704213i
\(226\) −125.486 + 217.349i −0.555249 + 0.961720i
\(227\) 175.411 + 101.274i 0.772737 + 0.446140i 0.833850 0.551991i \(-0.186132\pi\)
−0.0611131 + 0.998131i \(0.519465\pi\)
\(228\) −140.505 + 53.5442i −0.616250 + 0.234843i
\(229\) 39.6366 + 68.6525i 0.173085 + 0.299793i 0.939497 0.342557i \(-0.111293\pi\)
−0.766412 + 0.642350i \(0.777960\pi\)
\(230\) −155.506 89.7816i −0.676114 0.390355i
\(231\) 121.986 + 350.862i 0.528077 + 1.51888i
\(232\) 177.598 + 307.609i 0.765509 + 1.32590i
\(233\) 282.430 + 163.061i 1.21215 + 0.699833i 0.963227 0.268690i \(-0.0865909\pi\)
0.248921 + 0.968524i \(0.419924\pi\)
\(234\) −37.0828 + 112.273i −0.158473 + 0.479800i
\(235\) −45.4814 78.7762i −0.193538 0.335218i
\(236\) 607.536i 2.57430i
\(237\) −323.154 262.985i −1.36352 1.10964i
\(238\) 177.132 + 328.829i 0.744252 + 1.38164i
\(239\) −210.918 121.774i −0.882503 0.509514i −0.0110203 0.999939i \(-0.503508\pi\)
−0.871483 + 0.490426i \(0.836841\pi\)
\(240\) −11.7320 1.88734i −0.0488832 0.00786391i
\(241\) −14.1702 + 24.5436i −0.0587976 + 0.101840i −0.893926 0.448215i \(-0.852060\pi\)
0.835128 + 0.550055i \(0.185393\pi\)
\(242\) −535.697 + 309.285i −2.21362 + 1.27804i
\(243\) 233.940 + 65.7345i 0.962717 + 0.270512i
\(244\) 471.478 1.93229
\(245\) −242.375 + 121.481i −0.989284 + 0.495839i
\(246\) 290.277 110.620i 1.17999 0.449675i
\(247\) 15.9799 + 27.6779i 0.0646958 + 0.112056i
\(248\) 228.359i 0.920804i
\(249\) −46.8310 7.53377i −0.188076 0.0302561i
\(250\) 345.774 1.38310
\(251\) 140.132i 0.558294i 0.960248 + 0.279147i \(0.0900516\pi\)
−0.960248 + 0.279147i \(0.909948\pi\)
\(252\) 70.1443 + 396.499i 0.278350 + 1.57341i
\(253\) 178.082 0.703882
\(254\) 45.3692i 0.178619i
\(255\) −256.739 + 97.8391i −1.00682 + 0.383683i
\(256\) −237.186 −0.926506
\(257\) 95.8445 55.3359i 0.372936 0.215315i −0.301804 0.953370i \(-0.597589\pi\)
0.674740 + 0.738055i \(0.264256\pi\)
\(258\) 64.0176 + 10.2986i 0.248130 + 0.0399171i
\(259\) −114.691 + 185.775i −0.442824 + 0.717280i
\(260\) 144.122i 0.554316i
\(261\) −275.987 309.520i −1.05742 1.18590i
\(262\) 35.8942 + 62.1705i 0.137001 + 0.237292i
\(263\) −42.7543 24.6842i −0.162564 0.0938563i 0.416511 0.909131i \(-0.363253\pi\)
−0.579075 + 0.815274i \(0.696586\pi\)
\(264\) −382.256 + 145.672i −1.44794 + 0.551787i
\(265\) 104.106 180.317i 0.392853 0.680441i
\(266\) 150.570 + 92.9566i 0.566052 + 0.349461i
\(267\) 57.9095 + 151.960i 0.216890 + 0.569139i
\(268\) 77.9166 0.290734
\(269\) −162.040 + 93.5538i −0.602379 + 0.347784i −0.769977 0.638072i \(-0.779732\pi\)
0.167598 + 0.985855i \(0.446399\pi\)
\(270\) −481.077 + 21.7038i −1.78177 + 0.0803845i
\(271\) 108.146 187.315i 0.399064 0.691199i −0.594547 0.804061i \(-0.702668\pi\)
0.993611 + 0.112862i \(0.0360018\pi\)
\(272\) 10.2620 5.92476i 0.0377279 0.0217822i
\(273\) 80.8390 28.1057i 0.296114 0.102951i
\(274\) −59.7747 + 103.533i −0.218156 + 0.377857i
\(275\) 85.9920 49.6475i 0.312698 0.180536i
\(276\) 190.586 + 30.6599i 0.690530 + 0.111086i
\(277\) −39.0618 + 67.6570i −0.141017 + 0.244249i −0.927880 0.372879i \(-0.878371\pi\)
0.786863 + 0.617128i \(0.211704\pi\)
\(278\) 393.828 + 227.377i 1.41665 + 0.817901i
\(279\) 54.1661 + 261.051i 0.194144 + 0.935666i
\(280\) −141.593 262.853i −0.505688 0.938762i
\(281\) −385.051 + 222.309i −1.37029 + 0.791135i −0.990964 0.134129i \(-0.957176\pi\)
−0.379323 + 0.925264i \(0.623843\pi\)
\(282\) 123.314 + 100.354i 0.437285 + 0.355865i
\(283\) −128.424 −0.453796 −0.226898 0.973919i \(-0.572858\pi\)
−0.226898 + 0.973919i \(0.572858\pi\)
\(284\) 127.917i 0.450411i
\(285\) −82.1616 + 100.960i −0.288286 + 0.354244i
\(286\) 116.194 + 201.254i 0.406272 + 0.703684i
\(287\) −191.329 118.120i −0.666650 0.411567i
\(288\) 292.063 60.6008i 1.01411 0.210419i
\(289\) −7.50994 + 13.0076i −0.0259859 + 0.0450090i
\(290\) 711.720 + 410.912i 2.45421 + 1.41694i
\(291\) 82.0692 510.154i 0.282025 1.75311i
\(292\) 73.4574 + 127.232i 0.251566 + 0.435726i
\(293\) −42.6510 24.6246i −0.145567 0.0840429i 0.425448 0.904983i \(-0.360117\pi\)
−0.571014 + 0.820940i \(0.693450\pi\)
\(294\) 320.250 349.266i 1.08929 1.18798i
\(295\) −262.969 455.475i −0.891420 1.54398i
\(296\) −208.220 120.216i −0.703446 0.406135i
\(297\) 402.426 257.196i 1.35497 0.865979i
\(298\) 186.512 + 323.049i 0.625880 + 1.08406i
\(299\) 41.0304i 0.137225i
\(300\) 100.578 38.3285i 0.335259 0.127762i
\(301\) −22.2583 41.3204i −0.0739477 0.137277i
\(302\) 419.635 + 242.276i 1.38952 + 0.802239i
\(303\) 18.5005 + 48.5471i 0.0610579 + 0.160222i
\(304\) 2.80694 4.86177i 0.00923337 0.0159927i
\(305\) 353.471 204.077i 1.15892 0.669104i
\(306\) 358.426 319.594i 1.17133 1.04442i
\(307\) −387.296 −1.26155 −0.630776 0.775965i \(-0.717263\pi\)
−0.630776 + 0.775965i \(0.717263\pi\)
\(308\) 673.393 + 415.730i 2.18634 + 1.34977i
\(309\) 13.1509 81.7481i 0.0425596 0.264557i
\(310\) −264.179 457.572i −0.852191 1.47604i
\(311\) 101.097i 0.325070i −0.986703 0.162535i \(-0.948033\pi\)
0.986703 0.162535i \(-0.0519671\pi\)
\(312\) 33.5630 + 88.0724i 0.107574 + 0.282283i
\(313\) 364.791 1.16547 0.582733 0.812663i \(-0.301983\pi\)
0.582733 + 0.812663i \(0.301983\pi\)
\(314\) 883.436i 2.81349i
\(315\) 224.211 + 266.898i 0.711780 + 0.847295i
\(316\) −887.634 −2.80897
\(317\) 33.1510i 0.104577i −0.998632 0.0522886i \(-0.983348\pi\)
0.998632 0.0522886i \(-0.0166516\pi\)
\(318\) −57.8013 + 359.301i −0.181765 + 1.12988i
\(319\) −815.045 −2.55500
\(320\) −498.208 + 287.641i −1.55690 + 0.898877i
\(321\) 130.869 + 343.413i 0.407692 + 1.06982i
\(322\) −107.736 200.003i −0.334585 0.621126i
\(323\) 129.802i 0.401864i
\(324\) 474.964 205.970i 1.46594 0.635711i
\(325\) −11.4388 19.8127i −0.0351965 0.0609621i
\(326\) −621.575 358.866i −1.90667 1.10082i
\(327\) −16.2697 + 101.135i −0.0497545 + 0.309281i
\(328\) 123.809 214.444i 0.377468 0.653794i
\(329\) 3.39348 115.032i 0.0103145 0.349640i
\(330\) −597.419 + 734.103i −1.81036 + 2.22456i
\(331\) −90.5077 −0.273437 −0.136719 0.990610i \(-0.543656\pi\)
−0.136719 + 0.990610i \(0.543656\pi\)
\(332\) −87.5154 + 50.5271i −0.263601 + 0.152190i
\(333\) 266.543 + 88.0368i 0.800431 + 0.264375i
\(334\) −116.856 + 202.401i −0.349869 + 0.605990i
\(335\) 58.4148 33.7258i 0.174373 0.100674i
\(336\) −11.3754 9.82892i −0.0338553 0.0292527i
\(337\) 216.839 375.576i 0.643438 1.11447i −0.341221 0.939983i \(-0.610841\pi\)
0.984660 0.174485i \(-0.0558261\pi\)
\(338\) −425.426 + 245.620i −1.25866 + 0.726686i
\(339\) −83.1738 218.256i −0.245351 0.643822i
\(340\) −292.671 + 506.921i −0.860797 + 1.49094i
\(341\) 453.798 + 262.000i 1.33079 + 0.768329i
\(342\) 71.3532 216.032i 0.208635 0.631671i
\(343\) −341.658 30.3076i −0.996089 0.0883603i
\(344\) 44.7614 25.8430i 0.130120 0.0751250i
\(345\) 156.155 59.5083i 0.452624 0.172488i
\(346\) −680.731 −1.96743
\(347\) 11.6949i 0.0337029i −0.999858 0.0168514i \(-0.994636\pi\)
0.999858 0.0168514i \(-0.00536423\pi\)
\(348\) −872.273 140.324i −2.50653 0.403229i
\(349\) 91.7075 + 158.842i 0.262772 + 0.455135i 0.966978 0.254862i \(-0.0820299\pi\)
−0.704205 + 0.709996i \(0.748697\pi\)
\(350\) −107.782 66.5410i −0.307949 0.190117i
\(351\) −59.2583 92.7196i −0.168827 0.264159i
\(352\) 293.125 507.707i 0.832741 1.44235i
\(353\) −58.9619 34.0417i −0.167031 0.0964353i 0.414154 0.910207i \(-0.364077\pi\)
−0.581185 + 0.813771i \(0.697411\pi\)
\(354\) 712.990 + 580.236i 2.01410 + 1.63909i
\(355\) −55.3681 95.9004i −0.155967 0.270142i
\(356\) 300.039 + 173.228i 0.842807 + 0.486595i
\(357\) −341.410 65.3047i −0.956329 0.182926i
\(358\) 129.528 + 224.350i 0.361811 + 0.626675i
\(359\) −386.169 222.955i −1.07568 0.621044i −0.145952 0.989292i \(-0.546625\pi\)
−0.929728 + 0.368247i \(0.879958\pi\)
\(360\) −286.512 + 255.471i −0.795866 + 0.709642i
\(361\) 149.752 + 259.378i 0.414826 + 0.718500i
\(362\) 396.319i 1.09480i
\(363\) 91.4332 568.362i 0.251882 1.56574i
\(364\) 95.7848 155.151i 0.263145 0.426238i
\(365\) 110.143 + 63.5913i 0.301763 + 0.174223i
\(366\) −450.292 + 553.315i −1.23031 + 1.51179i
\(367\) −63.3424 + 109.712i −0.172595 + 0.298943i −0.939326 0.343025i \(-0.888549\pi\)
0.766731 + 0.641968i \(0.221882\pi\)
\(368\) −6.24161 + 3.60360i −0.0169609 + 0.00979238i
\(369\) −90.6684 + 274.511i −0.245714 + 0.743932i
\(370\) −556.291 −1.50349
\(371\) 231.912 124.925i 0.625101 0.336726i
\(372\) 440.553 + 358.526i 1.18428 + 0.963779i
\(373\) 306.165 + 530.293i 0.820817 + 1.42170i 0.905075 + 0.425252i \(0.139815\pi\)
−0.0842582 + 0.996444i \(0.526852\pi\)
\(374\) 943.825i 2.52360i
\(375\) −203.117 + 249.589i −0.541646 + 0.665570i
\(376\) 126.733 0.337057
\(377\) 187.787i 0.498110i
\(378\) −532.315 296.363i −1.40824 0.784029i
\(379\) 410.847 1.08403 0.542015 0.840369i \(-0.317662\pi\)
0.542015 + 0.840369i \(0.317662\pi\)
\(380\) 277.314i 0.729775i
\(381\) −32.7486 26.6511i −0.0859544 0.0699504i
\(382\) 1145.95 2.99986
\(383\) 190.627 110.059i 0.497722 0.287360i −0.230051 0.973179i \(-0.573889\pi\)
0.727772 + 0.685819i \(0.240556\pi\)
\(384\) 383.638 471.411i 0.999056 1.22763i
\(385\) 684.796 + 20.2018i 1.77869 + 0.0524721i
\(386\) 127.844i 0.331203i
\(387\) −45.0395 + 40.1599i −0.116381 + 0.103772i
\(388\) −550.417 953.351i −1.41860 2.45709i
\(389\) 149.180 + 86.1293i 0.383497 + 0.221412i 0.679339 0.733825i \(-0.262267\pi\)
−0.295842 + 0.955237i \(0.595600\pi\)
\(390\) 169.138 + 137.646i 0.433688 + 0.352939i
\(391\) −83.3209 + 144.316i −0.213097 + 0.369095i
\(392\) 22.2669 377.071i 0.0568033 0.961916i
\(393\) −65.9615 10.6113i −0.167841 0.0270008i
\(394\) 421.109 1.06880
\(395\) −665.468 + 384.208i −1.68473 + 0.972678i
\(396\) 319.113 966.159i 0.805841 2.43979i
\(397\) −185.521 + 321.332i −0.467308 + 0.809401i −0.999302 0.0373470i \(-0.988109\pi\)
0.531995 + 0.846748i \(0.321443\pi\)
\(398\) −605.912 + 349.824i −1.52239 + 0.878954i
\(399\) −155.547 + 54.0799i −0.389843 + 0.135539i
\(400\) −2.00929 + 3.48020i −0.00502323 + 0.00870049i
\(401\) −259.303 + 149.708i −0.646640 + 0.373338i −0.787168 0.616739i \(-0.788453\pi\)
0.140528 + 0.990077i \(0.455120\pi\)
\(402\) −74.4154 + 91.4411i −0.185113 + 0.227465i
\(403\) 60.3652 104.556i 0.149790 0.259443i
\(404\) 95.8544 + 55.3416i 0.237263 + 0.136984i
\(405\) 266.932 360.004i 0.659090 0.888898i
\(406\) 493.087 + 915.370i 1.21450 + 2.25460i
\(407\) 477.788 275.851i 1.17393 0.677767i
\(408\) 60.7987 377.934i 0.149016 0.926308i
\(409\) −374.401 −0.915407 −0.457703 0.889105i \(-0.651328\pi\)
−0.457703 + 0.889105i \(0.651328\pi\)
\(410\) 572.919i 1.39736i
\(411\) −39.6194 103.965i −0.0963975 0.252956i
\(412\) −88.2000 152.767i −0.214078 0.370793i
\(413\) 19.6208 665.100i 0.0475079 1.61041i
\(414\) −218.004 + 194.385i −0.526580 + 0.469530i
\(415\) −43.7408 + 75.7613i −0.105399 + 0.182557i
\(416\) −116.976 67.5364i −0.281193 0.162347i
\(417\) −395.471 + 150.708i −0.948373 + 0.361410i
\(418\) −223.576 387.244i −0.534870 0.926422i
\(419\) 350.317 + 202.256i 0.836080 + 0.482711i 0.855930 0.517092i \(-0.172986\pi\)
−0.0198501 + 0.999803i \(0.506319\pi\)
\(420\) 729.401 + 139.520i 1.73667 + 0.332189i
\(421\) −231.002 400.107i −0.548698 0.950372i −0.998364 0.0571757i \(-0.981790\pi\)
0.449666 0.893197i \(-0.351543\pi\)
\(422\) 304.916 + 176.043i 0.722549 + 0.417164i
\(423\) −144.876 + 30.0607i −0.342497 + 0.0710655i
\(424\) 145.045 + 251.225i 0.342087 + 0.592512i
\(425\) 92.9161i 0.218626i
\(426\) 150.120 + 122.169i 0.352395 + 0.286781i
\(427\) 516.150 + 15.2267i 1.20878 + 0.0356596i
\(428\) 678.055 + 391.475i 1.58424 + 0.914662i
\(429\) −213.525 34.3501i −0.497728 0.0800703i
\(430\) 59.7933 103.565i 0.139054 0.240849i
\(431\) 197.559 114.061i 0.458374 0.264643i −0.252986 0.967470i \(-0.581413\pi\)
0.711360 + 0.702827i \(0.248079\pi\)
\(432\) −8.90017 + 17.1578i −0.0206022 + 0.0397171i
\(433\) 777.626 1.79590 0.897951 0.440095i \(-0.145055\pi\)
0.897951 + 0.440095i \(0.145055\pi\)
\(434\) 19.7111 668.161i 0.0454172 1.53954i
\(435\) −714.690 + 272.357i −1.64297 + 0.626108i
\(436\) 109.117 + 188.996i 0.250268 + 0.433477i
\(437\) 78.9490i 0.180661i
\(438\) −219.473 35.3069i −0.501080 0.0806094i
\(439\) 68.8012 0.156722 0.0783612 0.996925i \(-0.475031\pi\)
0.0783612 + 0.996925i \(0.475031\pi\)
\(440\) 754.458i 1.71468i
\(441\) 63.9854 + 436.333i 0.145092 + 0.989418i
\(442\) −217.459 −0.491988
\(443\) 208.330i 0.470271i 0.971963 + 0.235136i \(0.0755534\pi\)
−0.971963 + 0.235136i \(0.924447\pi\)
\(444\) 558.829 212.961i 1.25862 0.479642i
\(445\) 299.923 0.673984
\(446\) 521.312 300.979i 1.16886 0.674842i
\(447\) −342.747 55.1382i −0.766772 0.123352i
\(448\) −727.500 21.4616i −1.62388 0.0479053i
\(449\) 259.045i 0.576937i 0.957489 + 0.288469i \(0.0931461\pi\)
−0.957489 + 0.288469i \(0.906854\pi\)
\(450\) −51.0767 + 154.642i −0.113504 + 0.343648i
\(451\) 284.097 + 492.071i 0.629927 + 1.09107i
\(452\) −430.938 248.802i −0.953402 0.550447i
\(453\) −421.386 + 160.584i −0.930212 + 0.354489i
\(454\) −326.463 + 565.450i −0.719081 + 1.24548i
\(455\) 4.65452 157.778i 0.0102297 0.346765i
\(456\) −64.5806 169.465i −0.141624 0.371635i
\(457\) 159.437 0.348878 0.174439 0.984668i \(-0.444189\pi\)
0.174439 + 0.984668i \(0.444189\pi\)
\(458\) −221.306 + 127.771i −0.483201 + 0.278976i
\(459\) 20.1420 + 446.459i 0.0438824 + 0.972678i
\(460\) 178.010 308.323i 0.386979 0.670267i
\(461\) −176.910 + 102.139i −0.383752 + 0.221559i −0.679449 0.733722i \(-0.737781\pi\)
0.295697 + 0.955282i \(0.404448\pi\)
\(462\) −1131.03 + 393.229i −2.44811 + 0.851146i
\(463\) −381.105 + 660.092i −0.823120 + 1.42569i 0.0802276 + 0.996777i \(0.474435\pi\)
−0.903348 + 0.428909i \(0.858898\pi\)
\(464\) 28.5666 16.4929i 0.0615659 0.0355451i
\(465\) 485.473 + 78.0987i 1.04403 + 0.167954i
\(466\) −525.638 + 910.432i −1.12798 + 1.95372i
\(467\) −462.046 266.762i −0.989391 0.571225i −0.0842988 0.996441i \(-0.526865\pi\)
−0.905092 + 0.425215i \(0.860198\pi\)
\(468\) −222.604 73.5241i −0.475650 0.157103i
\(469\) 85.2993 + 2.51636i 0.181875 + 0.00536538i
\(470\) 253.940 146.612i 0.540298 0.311941i
\(471\) 637.687 + 518.954i 1.35390 + 1.10181i
\(472\) 732.759 1.55245
\(473\) 118.600i 0.250741i
\(474\) 847.748 1041.71i 1.78850 2.19769i
\(475\) 22.0102 + 38.1228i 0.0463372 + 0.0802584i
\(476\) −651.970 + 351.200i −1.36969 + 0.737815i
\(477\) −225.399 252.786i −0.472535 0.529950i
\(478\) 392.545 679.909i 0.821225 1.42240i
\(479\) 523.526 + 302.258i 1.09296 + 0.631019i 0.934362 0.356325i \(-0.115970\pi\)
0.158595 + 0.987344i \(0.449304\pi\)
\(480\) 87.3766 543.145i 0.182034 1.13155i
\(481\) −63.5565 110.083i −0.132134 0.228863i
\(482\) −79.1177 45.6787i −0.164145 0.0947690i
\(483\) 207.654 + 39.7200i 0.429926 + 0.0822361i
\(484\) −613.220 1062.13i −1.26698 2.19448i
\(485\) −825.306 476.491i −1.70166 0.982455i
\(486\) −211.899 + 754.121i −0.436007 + 1.55169i
\(487\) −78.1017 135.276i −0.160373 0.277774i 0.774629 0.632415i \(-0.217936\pi\)
−0.935002 + 0.354641i \(0.884603\pi\)
\(488\) 568.657i 1.16528i
\(489\) 624.169 237.861i 1.27642 0.486423i
\(490\) −391.600 781.310i −0.799184 1.59451i
\(491\) −346.903 200.285i −0.706523 0.407911i 0.103249 0.994656i \(-0.467076\pi\)
−0.809772 + 0.586744i \(0.800409\pi\)
\(492\) 219.327 + 575.534i 0.445786 + 1.16978i
\(493\) 381.342 660.505i 0.773514 1.33977i
\(494\) −89.2216 + 51.5121i −0.180611 + 0.104276i
\(495\) −178.955 862.465i −0.361525 1.74235i
\(496\) −21.2069 −0.0427559
\(497\) 4.13115 140.037i 0.00831218 0.281765i
\(498\) 24.2856 150.963i 0.0487662 0.303138i
\(499\) 61.1444 + 105.905i 0.122534 + 0.212235i 0.920766 0.390115i \(-0.127565\pi\)
−0.798232 + 0.602350i \(0.794231\pi\)
\(500\) 685.567i 1.37113i
\(501\) −77.4536 203.245i −0.154598 0.405680i
\(502\) −451.724 −0.899848
\(503\) 786.814i 1.56424i 0.623126 + 0.782121i \(0.285862\pi\)
−0.623126 + 0.782121i \(0.714138\pi\)
\(504\) −478.224 + 84.6022i −0.948858 + 0.167861i
\(505\) 95.8173 0.189737
\(506\) 574.059i 1.13450i
\(507\) 72.6121 451.368i 0.143219 0.890271i
\(508\) −89.9536 −0.177074
\(509\) −781.867 + 451.411i −1.53609 + 0.886859i −0.537023 + 0.843568i \(0.680451\pi\)
−0.999062 + 0.0432914i \(0.986216\pi\)
\(510\) −315.391 827.614i −0.618413 1.62277i
\(511\) 76.3085 + 141.660i 0.149332 + 0.277220i
\(512\) 45.8004i 0.0894539i
\(513\) 114.022 + 178.407i 0.222266 + 0.347773i
\(514\) 178.379 + 308.961i 0.347040 + 0.601092i
\(515\) −132.249 76.3539i −0.256794 0.148260i
\(516\) −20.4191 + 126.928i −0.0395718 + 0.245984i
\(517\) −145.403 + 251.846i −0.281244 + 0.487129i
\(518\) −598.859 369.715i −1.15610 0.713736i
\(519\) 399.880 491.369i 0.770482 0.946762i
\(520\) 173.828 0.334285
\(521\) 442.743 255.618i 0.849795 0.490630i −0.0107865 0.999942i \(-0.503434\pi\)
0.860582 + 0.509312i \(0.170100\pi\)
\(522\) 997.759 889.661i 1.91141 1.70433i
\(523\) 489.654 848.105i 0.936240 1.62162i 0.163833 0.986488i \(-0.447614\pi\)
0.772407 0.635128i \(-0.219053\pi\)
\(524\) −123.266 + 71.1675i −0.235240 + 0.135816i
\(525\) 111.345 38.7120i 0.212086 0.0737371i
\(526\) 79.5711 137.821i 0.151276 0.262018i
\(527\) −424.645 + 245.169i −0.805778 + 0.465216i
\(528\) 13.5280 + 35.4988i 0.0256212 + 0.0672325i
\(529\) −213.822 + 370.351i −0.404200 + 0.700096i
\(530\) 581.263 + 335.592i 1.09672 + 0.633193i
\(531\) −837.659 + 173.808i −1.57751 + 0.327322i
\(532\) −184.305 + 298.535i −0.346438 + 0.561156i
\(533\) 113.374 65.4564i 0.212709 0.122807i
\(534\) −489.853 + 186.675i −0.917327 + 0.349579i
\(535\) 677.793 1.26690
\(536\) 93.9764i 0.175329i
\(537\) −238.030 38.2922i −0.443258 0.0713076i
\(538\) −301.577 522.346i −0.560552 0.970904i
\(539\) 723.772 + 476.868i 1.34280 + 0.884728i
\(540\) −43.0322 953.833i −0.0796893 1.76636i
\(541\) 350.265 606.676i 0.647439 1.12140i −0.336293 0.941757i \(-0.609173\pi\)
0.983732 0.179640i \(-0.0574934\pi\)
\(542\) 603.822 + 348.617i 1.11406 + 0.643204i
\(543\) −286.073 232.808i −0.526838 0.428745i
\(544\) 274.294 + 475.091i 0.504217 + 0.873329i
\(545\) 163.612 + 94.4613i 0.300205 + 0.173324i
\(546\) 90.6006 + 260.590i 0.165935 + 0.477271i
\(547\) 294.015 + 509.248i 0.537504 + 0.930984i 0.999038 + 0.0438616i \(0.0139660\pi\)
−0.461534 + 0.887123i \(0.652701\pi\)
\(548\) −205.275 118.515i −0.374589 0.216269i
\(549\) −134.883 650.065i −0.245689 1.18409i
\(550\) 160.042 + 277.201i 0.290985 + 0.504001i
\(551\) 361.333i 0.655777i
\(552\) −36.9794 + 229.869i −0.0669916 + 0.416430i
\(553\) −971.738 28.6667i −1.75721 0.0518385i
\(554\) −218.097 125.918i −0.393676 0.227289i
\(555\) 326.780 401.545i 0.588794 0.723505i
\(556\) −450.820 + 780.843i −0.810827 + 1.40439i
\(557\) 347.042 200.365i 0.623055 0.359721i −0.155002 0.987914i \(-0.549539\pi\)
0.778057 + 0.628193i \(0.216205\pi\)
\(558\) −841.514 + 174.608i −1.50809 + 0.312917i
\(559\) 27.3257 0.0488831
\(560\) −24.4103 + 13.1492i −0.0435897 + 0.0234807i
\(561\) 681.278 + 554.429i 1.21440 + 0.988287i
\(562\) −716.628 1241.24i −1.27514 2.20860i
\(563\) 91.1620i 0.161922i −0.996717 0.0809609i \(-0.974201\pi\)
0.996717 0.0809609i \(-0.0257989\pi\)
\(564\) −198.972 + 244.495i −0.352788 + 0.433502i
\(565\) −430.771 −0.762426
\(566\) 413.984i 0.731421i
\(567\) 526.619 210.147i 0.928781 0.370629i
\(568\) 154.282 0.271624
\(569\) 295.137i 0.518693i −0.965784 0.259347i \(-0.916493\pi\)
0.965784 0.259347i \(-0.0835072\pi\)
\(570\) −325.450 264.853i −0.570964 0.464655i
\(571\) 914.813 1.60212 0.801062 0.598581i \(-0.204268\pi\)
0.801062 + 0.598581i \(0.204268\pi\)
\(572\) −399.026 + 230.378i −0.697598 + 0.402758i
\(573\) −673.159 + 827.173i −1.17480 + 1.44358i
\(574\) 380.767 616.760i 0.663357 1.07450i
\(575\) 56.5140i 0.0982852i
\(576\) 190.115 + 916.249i 0.330060 + 1.59071i
\(577\) −267.301 462.978i −0.463259 0.802389i 0.535862 0.844306i \(-0.319987\pi\)
−0.999121 + 0.0419171i \(0.986653\pi\)
\(578\) −41.9308 24.2088i −0.0725447 0.0418837i
\(579\) 92.2812 + 75.0992i 0.159380 + 0.129705i
\(580\) −814.715 + 1411.13i −1.40468 + 2.43298i
\(581\) −97.4394 + 52.4882i −0.167710 + 0.0903411i
\(582\) 1644.51 + 264.555i 2.82563 + 0.454562i
\(583\) −665.649 −1.14177
\(584\) −153.456 + 88.5981i −0.262768 + 0.151709i
\(585\) −198.713 + 41.2314i −0.339681 + 0.0704811i
\(586\) 79.3789 137.488i 0.135459 0.234622i
\(587\) 299.889 173.141i 0.510884 0.294959i −0.222313 0.974975i \(-0.571361\pi\)
0.733197 + 0.680016i \(0.238027\pi\)
\(588\) 692.490 + 634.961i 1.17770 + 1.07987i
\(589\) −116.152 + 201.182i −0.197203 + 0.341565i
\(590\) 1468.25 847.697i 2.48857 1.43677i
\(591\) −247.371 + 303.967i −0.418563 + 0.514327i
\(592\) −11.1640 + 19.3367i −0.0188582 + 0.0326633i
\(593\) 3.55214 + 2.05083i 0.00599012 + 0.00345840i 0.502992 0.864291i \(-0.332232\pi\)
−0.497002 + 0.867749i \(0.665566\pi\)
\(594\) 829.087 + 1297.25i 1.39577 + 2.18392i
\(595\) −336.773 + 545.500i −0.566005 + 0.916807i
\(596\) −640.509 + 369.798i −1.07468 + 0.620467i
\(597\) 103.418 642.859i 0.173229 1.07682i
\(598\) 132.264 0.221177
\(599\) 169.572i 0.283091i 0.989932 + 0.141546i \(0.0452072\pi\)
−0.989932 + 0.141546i \(0.954793\pi\)
\(600\) 46.2286 + 121.308i 0.0770477 + 0.202180i
\(601\) −312.975 542.089i −0.520757 0.901978i −0.999709 0.0241366i \(-0.992316\pi\)
0.478951 0.877841i \(-0.341017\pi\)
\(602\) 133.199 71.7510i 0.221261 0.119188i
\(603\) −22.2909 107.430i −0.0369667 0.178159i
\(604\) −480.362 + 832.011i −0.795301 + 1.37750i
\(605\) −919.473 530.858i −1.51979 0.877451i
\(606\) −156.495 + 59.6377i −0.258242 + 0.0984120i
\(607\) 18.8059 + 32.5727i 0.0309817 + 0.0536618i 0.881101 0.472929i \(-0.156803\pi\)
−0.850119 + 0.526591i \(0.823470\pi\)
\(608\) 225.081 + 129.951i 0.370200 + 0.213735i
\(609\) −950.390 181.790i −1.56057 0.298506i
\(610\) 657.855 + 1139.44i 1.07845 + 1.86793i
\(611\) 58.0256 + 33.5011i 0.0949682 + 0.0548299i
\(612\) 633.659 + 710.652i 1.03539 + 1.16120i
\(613\) −149.019 258.108i −0.243098 0.421057i 0.718497 0.695530i \(-0.244830\pi\)
−0.961595 + 0.274472i \(0.911497\pi\)
\(614\) 1248.48i 2.03335i
\(615\) 413.548 + 336.549i 0.672436 + 0.547233i
\(616\) −501.418 + 812.190i −0.813991 + 1.31849i
\(617\) 818.560 + 472.596i 1.32668 + 0.765957i 0.984784 0.173782i \(-0.0555987\pi\)
0.341893 + 0.939739i \(0.388932\pi\)
\(618\) 263.520 + 42.3929i 0.426408 + 0.0685969i
\(619\) 596.799 1033.69i 0.964133 1.66993i 0.252208 0.967673i \(-0.418843\pi\)
0.711926 0.702255i \(-0.247823\pi\)
\(620\) 907.229 523.789i 1.46327 0.844820i
\(621\) −12.2509 271.548i −0.0197277 0.437276i
\(622\) 325.892 0.523943
\(623\) 322.874 + 199.331i 0.518256 + 0.319954i
\(624\) 8.17896 3.11687i 0.0131073 0.00499499i
\(625\) 366.913 + 635.512i 0.587061 + 1.01682i
\(626\) 1175.93i 1.87848i
\(627\) 410.857 + 66.0952i 0.655275 + 0.105415i
\(628\) 1751.59 2.78916
\(629\) 516.260i 0.820764i
\(630\) −860.362 + 722.758i −1.36565 + 1.14723i
\(631\) −823.055 −1.30437 −0.652183 0.758062i \(-0.726147\pi\)
−0.652183 + 0.758062i \(0.726147\pi\)
\(632\) 1070.59i 1.69397i
\(633\) −306.188 + 116.683i −0.483709 + 0.184334i
\(634\) 106.864 0.168556
\(635\) −67.4390 + 38.9359i −0.106203 + 0.0613165i
\(636\) −712.388 114.603i −1.12011 0.180193i
\(637\) 109.871 166.758i 0.172482 0.261786i
\(638\) 2627.35i 4.11810i
\(639\) −176.369 + 36.5953i −0.276008 + 0.0572696i
\(640\) −560.476 970.773i −0.875744 1.51683i
\(641\) −617.070 356.265i −0.962667 0.555796i −0.0656744 0.997841i \(-0.520920\pi\)
−0.896993 + 0.442045i \(0.854253\pi\)
\(642\) −1107.01 + 421.865i −1.72432 + 0.657111i
\(643\) 534.902 926.478i 0.831885 1.44087i −0.0646564 0.997908i \(-0.520595\pi\)
0.896542 0.442960i \(-0.146072\pi\)
\(644\) 396.545 213.609i 0.615754 0.331691i
\(645\) 39.6317 + 103.997i 0.0614445 + 0.161236i
\(646\) 418.425 0.647717
\(647\) 973.422 562.006i 1.50452 0.868633i 0.504531 0.863394i \(-0.331666\pi\)
0.999986 0.00523936i \(-0.00166775\pi\)
\(648\) 248.424 + 572.861i 0.383370 + 0.884045i
\(649\) −840.705 + 1456.14i −1.29539 + 2.24367i
\(650\) 63.8674 36.8739i 0.0982576 0.0567290i
\(651\) 470.717 + 406.724i 0.723068 + 0.624768i
\(652\) 711.525 1232.40i 1.09130 1.89018i
\(653\) 41.9432 24.2159i 0.0642315 0.0370841i −0.467540 0.883972i \(-0.654860\pi\)
0.531772 + 0.846888i \(0.321526\pi\)
\(654\) −326.015 52.4464i −0.498494 0.0801933i
\(655\) −61.6090 + 106.710i −0.0940595 + 0.162916i
\(656\) −19.9147 11.4977i −0.0303577 0.0175270i
\(657\) 154.410 137.681i 0.235023 0.209560i
\(658\) 370.812 + 10.9391i 0.563544 + 0.0166248i
\(659\) −818.128 + 472.346i −1.24147 + 0.716762i −0.969393 0.245514i \(-0.921043\pi\)
−0.272076 + 0.962276i \(0.587710\pi\)
\(660\) −1455.51 1184.50i −2.20532 1.79470i
\(661\) 281.194 0.425407 0.212703 0.977117i \(-0.431773\pi\)
0.212703 + 0.977117i \(0.431773\pi\)
\(662\) 291.757i 0.440721i
\(663\) 127.741 156.967i 0.192671 0.236753i
\(664\) −60.9415 105.554i −0.0917794 0.158967i
\(665\) −8.95604 + 303.590i −0.0134677 + 0.456526i
\(666\) −283.792 + 859.220i −0.426114 + 1.29012i
\(667\) −231.942 + 401.736i −0.347740 + 0.602303i
\(668\) −401.300 231.691i −0.600749 0.346843i
\(669\) −88.9779 + 553.100i −0.133001 + 0.826756i
\(670\) 108.717 + 188.304i 0.162265 + 0.281051i
\(671\) −1130.04 652.429i −1.68411 0.972323i
\(672\) 455.041 526.637i 0.677145 0.783686i
\(673\) 246.892 + 427.630i 0.366854 + 0.635409i 0.989072 0.147435i \(-0.0471017\pi\)
−0.622218 + 0.782844i \(0.713768\pi\)
\(674\) 1210.69 + 698.994i 1.79628 + 1.03708i
\(675\) −81.6205 127.709i −0.120919 0.189199i
\(676\) −486.991 843.494i −0.720401 1.24777i
\(677\) 705.620i 1.04227i 0.853473 + 0.521137i \(0.174492\pi\)
−0.853473 + 0.521137i \(0.825508\pi\)
\(678\) 703.562 268.116i 1.03770 0.395452i
\(679\) −571.781 1061.46i −0.842093 1.56327i
\(680\) −611.405 352.995i −0.899126 0.519110i
\(681\) −216.383 567.810i −0.317743 0.833788i
\(682\) −844.575 + 1462.85i −1.23838 + 2.14494i
\(683\) −1010.24 + 583.260i −1.47912 + 0.853968i −0.999721 0.0236320i \(-0.992477\pi\)
−0.479394 + 0.877600i \(0.659144\pi\)
\(684\) 428.326 + 141.472i 0.626208 + 0.206831i
\(685\) −205.195 −0.299555
\(686\) 97.6984 1101.36i 0.142417 1.60548i
\(687\) 37.7727 234.800i 0.0549821 0.341777i
\(688\) −2.39995 4.15683i −0.00348829 0.00604190i
\(689\) 153.366i 0.222593i
\(690\) 191.829 + 503.377i 0.278013 + 0.729531i
\(691\) 365.668 0.529186 0.264593 0.964360i \(-0.414762\pi\)
0.264593 + 0.964360i \(0.414762\pi\)
\(692\) 1349.69i 1.95041i
\(693\) 380.552 1047.40i 0.549137 1.51140i
\(694\) 37.6993 0.0543217
\(695\) 780.541i 1.12308i
\(696\) 169.247 1052.06i 0.243171 1.51158i
\(697\) −531.692 −0.762830
\(698\) −512.038 + 295.625i −0.733578 + 0.423532i
\(699\) −348.399 914.232i −0.498425 1.30791i
\(700\) 131.931 213.700i 0.188473 0.305286i
\(701\) 254.519i 0.363080i 0.983384 + 0.181540i \(0.0581083\pi\)
−0.983384 + 0.181540i \(0.941892\pi\)
\(702\) 298.888 191.023i 0.425766 0.272112i
\(703\) 122.293 + 211.818i 0.173959 + 0.301305i
\(704\) 1592.76 + 919.581i 2.26244 + 1.30622i
\(705\) −43.3427 + 269.425i −0.0614790 + 0.382163i
\(706\) 109.735 190.067i 0.155433 0.269217i
\(707\) 103.149 + 63.6809i 0.145897 + 0.0900720i
\(708\) −1150.44 + 1413.65i −1.62491 + 1.99668i
\(709\) −1040.99 −1.46825 −0.734124 0.679015i \(-0.762407\pi\)
−0.734124 + 0.679015i \(0.762407\pi\)
\(710\) 309.141 178.483i 0.435410 0.251384i
\(711\) 253.940 + 1223.85i 0.357159 + 1.72131i
\(712\) −208.933 + 361.882i −0.293445 + 0.508261i
\(713\) 258.280 149.118i 0.362244 0.209142i
\(714\) 210.514 1100.56i 0.294837 1.54139i
\(715\) −199.436 + 345.433i −0.278931 + 0.483123i
\(716\) −444.818 + 256.816i −0.621255 + 0.358682i
\(717\) 260.184 + 682.746i 0.362878 + 0.952227i
\(718\) 718.710 1244.84i 1.00099 1.73376i
\(719\) 653.543 + 377.323i 0.908961 + 0.524789i 0.880097 0.474795i \(-0.157478\pi\)
0.0288642 + 0.999583i \(0.490811\pi\)
\(720\) 23.7247 + 26.6073i 0.0329509 + 0.0369546i
\(721\) −91.6233 170.090i −0.127078 0.235909i
\(722\) −836.123 + 482.736i −1.15807 + 0.668609i
\(723\) 79.4480 30.2764i 0.109887 0.0418760i
\(724\) −785.782 −1.08533
\(725\) 258.653i 0.356762i
\(726\) 1832.15 + 294.741i 2.52363 + 0.405979i
\(727\) 698.773 + 1210.31i 0.961174 + 1.66480i 0.719561 + 0.694429i \(0.244343\pi\)
0.241612 + 0.970373i \(0.422324\pi\)
\(728\) 187.130 + 115.528i 0.257046 + 0.158692i
\(729\) −419.869 595.946i −0.575952 0.817484i
\(730\) −204.991 + 355.054i −0.280809 + 0.486376i
\(731\) −96.1126 55.4906i −0.131481 0.0759106i
\(732\) −1097.06 892.795i −1.49871 1.21966i
\(733\) −626.744 1085.55i −0.855039 1.48097i −0.876609 0.481204i \(-0.840200\pi\)
0.0215697 0.999767i \(-0.493134\pi\)
\(734\) −353.664 204.188i −0.481832 0.278186i
\(735\) 794.007 + 176.296i 1.08028 + 0.239858i
\(736\) −166.833 288.963i −0.226675 0.392613i
\(737\) −186.751 107.821i −0.253393 0.146297i
\(738\) −884.904 292.275i −1.19906 0.396037i
\(739\) −534.999 926.646i −0.723950 1.25392i −0.959405 0.282033i \(-0.908991\pi\)
0.235454 0.971885i \(-0.424342\pi\)
\(740\) 1102.96i 1.49049i
\(741\) 15.2284 94.6621i 0.0205512 0.127749i
\(742\) 402.705 + 747.585i 0.542729 + 1.00753i
\(743\) −620.266 358.111i −0.834813 0.481980i 0.0206847 0.999786i \(-0.493415\pi\)
−0.855498 + 0.517806i \(0.826749\pi\)
\(744\) −432.423 + 531.359i −0.581214 + 0.714192i
\(745\) −320.131 + 554.483i −0.429706 + 0.744272i
\(746\) −1709.43 + 986.941i −2.29146 + 1.32298i
\(747\) 94.7028 + 106.210i 0.126777 + 0.142181i
\(748\) 1871.32 2.50177
\(749\) 729.659 + 450.466i 0.974177 + 0.601423i
\(750\) −804.566 654.762i −1.07275 0.873015i
\(751\) 60.3209 + 104.479i 0.0803208 + 0.139120i 0.903388 0.428825i \(-0.141072\pi\)
−0.823067 + 0.567944i \(0.807739\pi\)
\(752\) 11.7693i 0.0156506i
\(753\) 265.355 326.066i 0.352397 0.433022i
\(754\) −605.345 −0.802845
\(755\) 831.689i 1.10157i
\(756\) 587.600 1055.42i 0.777248 1.39606i
\(757\) −369.403 −0.487983 −0.243992 0.969777i \(-0.578457\pi\)
−0.243992 + 0.969777i \(0.578457\pi\)
\(758\) 1324.39i 1.74722i
\(759\) −414.371 337.218i −0.545943 0.444293i
\(760\) −334.473 −0.440096
\(761\) 992.067 572.770i 1.30364 0.752655i 0.322610 0.946532i \(-0.395440\pi\)
0.981026 + 0.193877i \(0.0621063\pi\)
\(762\) 85.9115 105.567i 0.112745 0.138540i
\(763\) 113.352 + 210.427i 0.148561 + 0.275790i
\(764\) 2272.07i 2.97391i
\(765\) 782.663 + 258.506i 1.02309 + 0.337916i
\(766\) 354.782 + 614.500i 0.463161 + 0.802219i
\(767\) 335.498 + 193.700i 0.437416 + 0.252542i
\(768\) 551.896 + 449.137i 0.718615 + 0.584814i
\(769\) 319.295 553.035i 0.415208 0.719162i −0.580242 0.814444i \(-0.697042\pi\)
0.995450 + 0.0952822i \(0.0303754\pi\)
\(770\) −65.1217 + 2207.48i −0.0845737 + 2.86686i
\(771\) −327.801 52.7337i −0.425163 0.0683966i
\(772\) 253.477 0.328338
\(773\) 169.438 97.8250i 0.219195 0.126552i −0.386382 0.922339i \(-0.626275\pi\)
0.605578 + 0.795786i \(0.292942\pi\)
\(774\) −129.458 145.188i −0.167258 0.187581i
\(775\) 83.1452 144.012i 0.107284 0.185822i
\(776\) 1149.85 663.867i 1.48177 0.855499i
\(777\) 618.656 215.091i 0.796211 0.276823i
\(778\) −277.643 + 480.892i −0.356868 + 0.618114i
\(779\) −218.149 + 125.949i −0.280038 + 0.161680i
\(780\) −272.911 + 335.351i −0.349886 + 0.429937i
\(781\) −177.011 + 306.591i −0.226646 + 0.392563i
\(782\) −465.212 268.590i −0.594901 0.343466i
\(783\) 56.0698 + 1242.82i 0.0716090 + 1.58725i
\(784\) −35.0172 2.06785i −0.0446648 0.00263756i
\(785\) 1313.18 758.167i 1.67285 0.965818i
\(786\) 34.2063 212.631i 0.0435194 0.270523i
\(787\) −17.3655 −0.0220654 −0.0110327 0.999939i \(-0.503512\pi\)
−0.0110327 + 0.999939i \(0.503512\pi\)
\(788\) 834.933i 1.05956i
\(789\) 52.7407 + 138.396i 0.0668450 + 0.175407i
\(790\) −1238.52 2145.18i −1.56775 2.71542i
\(791\) −463.734 286.294i −0.586263 0.361939i
\(792\) 1165.30 + 384.887i 1.47134 + 0.485969i
\(793\) −150.320 + 260.363i −0.189559 + 0.328326i
\(794\) −1035.83 598.040i −1.30458 0.753198i
\(795\) −583.689 + 222.435i −0.734200 + 0.279792i
\(796\) −693.596 1201.34i −0.871352 1.50923i
\(797\) −871.920 503.403i −1.09400 0.631622i −0.159363 0.987220i \(-0.550944\pi\)
−0.934639 + 0.355598i \(0.884277\pi\)
\(798\) −174.330 501.417i −0.218459 0.628342i
\(799\) −136.062 235.667i −0.170291 0.294952i
\(800\) −161.120 93.0225i −0.201400 0.116278i
\(801\) 153.006 463.247i 0.191019 0.578335i
\(802\) −482.595 835.879i −0.601739 1.04224i
\(803\) 406.600i 0.506351i
\(804\) −181.300 147.544i −0.225498 0.183512i
\(805\) 204.834 331.788i 0.254452 0.412158i
\(806\) 337.042 + 194.591i 0.418166 + 0.241428i
\(807\) 554.198 + 89.1545i 0.686738 + 0.110477i
\(808\) −66.7484 + 115.612i −0.0826094 + 0.143084i
\(809\) 364.210 210.277i 0.450198 0.259922i −0.257716 0.966221i \(-0.582970\pi\)
0.707914 + 0.706299i \(0.249636\pi\)
\(810\) 1160.49 + 860.471i 1.43271 + 1.06231i
\(811\) 1318.39 1.62564 0.812819 0.582517i \(-0.197932\pi\)
0.812819 + 0.582517i \(0.197932\pi\)
\(812\) −1814.91 + 977.644i −2.23510 + 1.20400i
\(813\) −606.342 + 231.067i −0.745808 + 0.284216i
\(814\) 889.224 + 1540.18i 1.09241 + 1.89212i
\(815\) 1231.92i 1.51156i
\(816\) −35.0973 5.64616i −0.0430114 0.00691931i
\(817\) −52.5790 −0.0643562
\(818\) 1206.91i 1.47544i
\(819\) −241.322 87.6797i −0.294654 0.107057i
\(820\) 1135.93 1.38528
\(821\) 771.778i 0.940047i −0.882654 0.470023i \(-0.844245\pi\)
0.882654 0.470023i \(-0.155755\pi\)
\(822\) 335.137 127.716i 0.407710 0.155372i
\(823\) 906.455 1.10140 0.550702 0.834702i \(-0.314360\pi\)
0.550702 + 0.834702i \(0.314360\pi\)
\(824\) 184.255 106.379i 0.223610 0.129101i
\(825\) −294.104 47.3128i −0.356489 0.0573489i
\(826\) 2143.99 + 63.2488i 2.59563 + 0.0765723i
\(827\) 509.463i 0.616038i 0.951380 + 0.308019i \(0.0996660\pi\)
−0.951380 + 0.308019i \(0.900334\pi\)
\(828\) −385.408 432.237i −0.465469 0.522025i
\(829\) 332.585 + 576.054i 0.401188 + 0.694878i 0.993870 0.110559i \(-0.0352641\pi\)
−0.592682 + 0.805437i \(0.701931\pi\)
\(830\) −244.221 141.001i −0.294243 0.169881i
\(831\) 219.007 83.4600i 0.263546 0.100433i
\(832\) 211.873 366.974i 0.254655 0.441075i
\(833\) −725.087 + 363.421i −0.870453 + 0.436280i
\(834\) −485.817 1274.83i −0.582514 1.52857i
\(835\) −401.145 −0.480413
\(836\) 767.790 443.284i 0.918409 0.530244i
\(837\) 368.292 709.996i 0.440014 0.848263i
\(838\) −651.985 + 1129.27i −0.778025 + 1.34758i
\(839\) 1237.78 714.635i 1.47531 0.851770i 0.475696 0.879610i \(-0.342196\pi\)
0.999612 + 0.0278396i \(0.00886276\pi\)
\(840\) −168.277 + 879.742i −0.200329 + 1.04731i
\(841\) 641.052 1110.33i 0.762250 1.32026i
\(842\) 1289.77 744.649i 1.53179 0.884381i
\(843\) 1316.92 + 211.855i 1.56219 + 0.251311i
\(844\) −349.041 + 604.557i −0.413556 + 0.716299i
\(845\) −730.204 421.583i −0.864147 0.498915i
\(846\) −96.9027 467.018i −0.114542 0.552031i
\(847\) −637.020 1182.57i −0.752090 1.39619i
\(848\) 23.3304 13.4698i 0.0275122 0.0158842i
\(849\) 298.824 + 243.186i 0.351972 + 0.286438i
\(850\) −299.521 −0.352378
\(851\) 314.003i 0.368981i
\(852\) −242.224 + 297.643i −0.284301 + 0.349347i
\(853\) 485.171 + 840.341i 0.568782 + 0.985159i 0.996687 + 0.0813353i \(0.0259185\pi\)
−0.427905 + 0.903824i \(0.640748\pi\)
\(854\) −49.0841 + 1663.84i −0.0574756 + 1.94830i
\(855\) 382.356 79.3359i 0.447200 0.0927905i
\(856\) −472.165 + 817.813i −0.551594 + 0.955389i
\(857\) −1308.06 755.208i −1.52632 0.881223i −0.999512 0.0312415i \(-0.990054\pi\)
−0.526812 0.849982i \(-0.676613\pi\)
\(858\) 110.730 688.313i 0.129056 0.802230i
\(859\) 614.191 + 1063.81i 0.715007 + 1.23843i 0.962957 + 0.269655i \(0.0869097\pi\)
−0.247950 + 0.968773i \(0.579757\pi\)
\(860\) 205.339 + 118.552i 0.238766 + 0.137852i
\(861\) 221.521 + 637.149i 0.257283 + 0.740011i
\(862\) 367.683 + 636.845i 0.426546 + 0.738800i
\(863\) 1292.69 + 746.335i 1.49790 + 0.864815i 0.999997 0.00241587i \(-0.000768995\pi\)
0.497906 + 0.867231i \(0.334102\pi\)
\(864\) −794.341 412.044i −0.919376 0.476902i
\(865\) −584.205 1011.87i −0.675382 1.16980i
\(866\) 2506.73i 2.89460i
\(867\) 42.1058 16.0459i 0.0485650 0.0185073i
\(868\) 1324.77 + 39.0811i 1.52623 + 0.0450244i
\(869\) 2127.48 + 1228.30i 2.44820 + 1.41347i
\(870\) −877.961 2303.85i −1.00915 2.64810i
\(871\) −24.8420 + 43.0277i −0.0285213 + 0.0494003i
\(872\) −227.951 + 131.608i −0.261412 + 0.150926i
\(873\) −1157.00 + 1031.65i −1.32531 + 1.18173i
\(874\) −254.497 −0.291187
\(875\) −22.1408 + 750.526i −0.0253038 + 0.857744i
\(876\) 70.0031 435.149i 0.0799122 0.496746i
\(877\) 173.474 + 300.466i 0.197804 + 0.342607i 0.947816 0.318817i \(-0.103286\pi\)
−0.750012 + 0.661424i \(0.769952\pi\)
\(878\) 221.785i 0.252602i
\(879\) 52.6133 + 138.062i 0.0598558 + 0.157067i
\(880\) 70.0638 0.0796179
\(881\) 738.403i 0.838142i −0.907953 0.419071i \(-0.862356\pi\)
0.907953 0.419071i \(-0.137644\pi\)
\(882\) −1406.55 + 206.261i −1.59473 + 0.233856i
\(883\) 872.215 0.987786 0.493893 0.869523i \(-0.335573\pi\)
0.493893 + 0.869523i \(0.335573\pi\)
\(884\) 431.156i 0.487733i
\(885\) −250.603 + 1557.78i −0.283167 + 1.76021i
\(886\) −671.566 −0.757975
\(887\) 548.437 316.640i 0.618306 0.356979i −0.157903 0.987455i \(-0.550473\pi\)
0.776209 + 0.630476i \(0.217140\pi\)
\(888\) 256.855 + 674.013i 0.289252 + 0.759023i
\(889\) −98.4767 2.90511i −0.110772 0.00326784i
\(890\) 966.821i 1.08632i
\(891\) −1423.42 163.582i −1.59755 0.183594i
\(892\) 596.753 + 1033.61i 0.669005 + 1.15875i
\(893\) −111.651 64.4615i −0.125029 0.0721853i
\(894\) 177.742 1104.87i 0.198816 1.23587i
\(895\) −222.323 + 385.075i −0.248406 + 0.430251i
\(896\) 41.8185 1417.55i 0.0466724 1.58209i
\(897\) −77.6955 + 95.4716i −0.0866171 + 0.106434i
\(898\) −835.048 −0.929897
\(899\) −1182.09 + 682.483i −1.31490 + 0.759158i
\(900\) −306.608 101.270i −0.340676 0.112522i
\(901\) 311.443 539.436i 0.345664 0.598708i
\(902\) −1586.22 + 915.805i −1.75856 + 1.01531i
\(903\) −26.4530 + 138.295i −0.0292946 + 0.153151i
\(904\) 300.084 519.761i 0.331951 0.574957i
\(905\) −589.108 + 340.122i −0.650948 + 0.375825i
\(906\) −517.652 1358.37i −0.571359 1.49930i
\(907\) −560.854 + 971.427i −0.618361 + 1.07103i 0.371424 + 0.928464i \(0.378870\pi\)
−0.989785 + 0.142570i \(0.954464\pi\)
\(908\) −1121.12 647.278i −1.23471 0.712861i
\(909\) 48.8813 147.995i 0.0537748 0.162811i
\(910\) 508.607 + 15.0041i 0.558909 + 0.0164881i
\(911\) −770.852 + 445.052i −0.846160 + 0.488531i −0.859353 0.511382i \(-0.829134\pi\)
0.0131931 + 0.999913i \(0.495800\pi\)
\(912\) −15.7376 + 5.99736i −0.0172562 + 0.00657606i
\(913\) 279.677 0.306327
\(914\) 513.956i 0.562315i
\(915\) −1208.92 194.480i −1.32122 0.212547i
\(916\) −253.332 438.784i −0.276563 0.479021i
\(917\) −137.244 + 73.9297i −0.149666 + 0.0806213i
\(918\) −1439.19 + 64.9291i −1.56775 + 0.0707289i
\(919\) 567.953 983.724i 0.618012 1.07043i −0.371836 0.928299i \(-0.621271\pi\)
0.989848 0.142130i \(-0.0453952\pi\)
\(920\) 371.873 + 214.701i 0.404210 + 0.233371i
\(921\) 901.182 + 733.388i 0.978482 + 0.796296i
\(922\) −329.251 570.280i −0.357105 0.618525i
\(923\) 70.6391 + 40.7835i 0.0765321 + 0.0441858i
\(924\) −779.657 2242.49i −0.843784 2.42693i
\(925\) −87.5408 151.625i −0.0946387 0.163919i
\(926\) −2127.85 1228.52i −2.29790 1.32669i
\(927\) −185.399 + 165.313i −0.199999 + 0.178331i
\(928\) 763.559 + 1322.52i 0.822800 + 1.42513i
\(929\) 719.197i 0.774162i −0.922046 0.387081i \(-0.873483\pi\)
0.922046 0.387081i \(-0.126517\pi\)
\(930\) −251.756 + 1564.95i −0.270706 + 1.68275i
\(931\) −211.410 + 320.869i −0.227078 + 0.344650i
\(932\) −1805.12 1042.18i −1.93682 1.11822i
\(933\) −191.438 + 235.238i −0.205186 + 0.252130i
\(934\) 859.925 1489.43i 0.920691 1.59468i
\(935\) 1402.95 809.994i 1.50048 0.866303i
\(936\) 88.6786 268.487i 0.0947421 0.286845i
\(937\) −1522.34 −1.62470 −0.812348 0.583172i \(-0.801811\pi\)
−0.812348 + 0.583172i \(0.801811\pi\)
\(938\) −8.11166 + 274.968i −0.00864783 + 0.293142i
\(939\) −848.815 690.772i −0.903957 0.735646i
\(940\) 290.689 + 503.488i 0.309243 + 0.535625i
\(941\) 1023.51i 1.08768i −0.839188 0.543841i \(-0.816970\pi\)
0.839188 0.543841i \(-0.183030\pi\)
\(942\) −1672.88 + 2055.62i −1.77588 + 2.18219i
\(943\) 323.389 0.342937
\(944\) 68.0487i 0.0720855i
\(945\) −16.3049 1045.60i −0.0172539 1.10645i
\(946\) −382.316 −0.404139
\(947\) 1572.43i 1.66043i −0.557441 0.830217i \(-0.688217\pi\)
0.557441 0.830217i \(-0.311783\pi\)
\(948\) 2065.39 + 1680.83i 2.17868 + 1.77303i
\(949\) −93.6812 −0.0987157
\(950\) −122.891 + 70.9512i −0.129359 + 0.0746855i
\(951\) −62.7750 + 77.1374i −0.0660095 + 0.0811119i
\(952\) −423.588 786.352i −0.444945 0.826000i
\(953\) 1342.92i 1.40915i −0.709629 0.704576i \(-0.751137\pi\)
0.709629 0.704576i \(-0.248863\pi\)
\(954\) 814.872 726.588i 0.854163 0.761623i
\(955\) 983.453 + 1703.39i 1.02979 + 1.78366i
\(956\) 1348.06 + 778.301i 1.41010 + 0.814122i
\(957\) 1896.49 + 1543.38i 1.98170 + 1.61272i
\(958\) −974.348 + 1687.62i −1.01706 + 1.76161i
\(959\) −220.897 136.374i −0.230341 0.142205i
\(960\) 1703.94 + 274.115i 1.77493 + 0.285536i
\(961\) −83.4501 −0.0868367
\(962\) 354.860 204.879i 0.368877 0.212971i
\(963\) 345.776 1046.89i 0.359062 1.08711i
\(964\) 90.5672 156.867i 0.0939493 0.162725i
\(965\) 190.034 109.716i 0.196927 0.113696i
\(966\) −128.040 + 669.387i −0.132547 + 0.692947i
\(967\) −867.804 + 1503.08i −0.897418 + 1.55437i −0.0666355 + 0.997777i \(0.521226\pi\)
−0.830783 + 0.556597i \(0.812107\pi\)
\(968\) 1281.05 739.614i 1.32340 0.764064i
\(969\) −245.795 + 302.030i −0.253658 + 0.311693i
\(970\) 1536.00 2660.43i 1.58350 2.74271i
\(971\) −43.8474 25.3153i −0.0451569 0.0260714i 0.477252 0.878767i \(-0.341633\pi\)
−0.522409 + 0.852695i \(0.674966\pi\)
\(972\) −1495.20 420.133i −1.53827 0.432236i
\(973\) −518.753 + 840.269i −0.533148 + 0.863586i
\(974\) 436.071 251.766i 0.447712 0.258486i
\(975\) −10.9009 + 67.7619i −0.0111805 + 0.0694994i
\(976\) 52.8091 0.0541077
\(977\) 585.107i 0.598881i 0.954115 + 0.299440i \(0.0968000\pi\)
−0.954115 + 0.299440i \(0.903200\pi\)
\(978\) 766.760 + 2012.05i 0.784008 + 2.05731i
\(979\) −479.423 830.386i −0.489707 0.848198i
\(980\) 1549.11 776.427i 1.58072 0.792272i
\(981\) 229.367 204.517i 0.233810 0.208479i
\(982\) 645.630 1118.26i 0.657464 1.13876i
\(983\) 839.089 + 484.448i 0.853600 + 0.492826i 0.861864 0.507140i \(-0.169297\pi\)
−0.00826378 + 0.999966i \(0.502630\pi\)
\(984\) −694.160 + 264.533i −0.705447 + 0.268835i
\(985\) 361.397 + 625.957i 0.366900 + 0.635489i
\(986\) 2129.18 + 1229.28i 2.15941 + 1.24674i
\(987\) −225.721 + 261.236i −0.228694 + 0.264676i
\(988\) −102.133 176.900i −0.103374 0.179048i
\(989\) 58.4582 + 33.7508i 0.0591084 + 0.0341262i
\(990\) 2780.21 576.872i 2.80829 0.582699i
\(991\) −104.448 180.910i −0.105397 0.182553i 0.808503 0.588492i \(-0.200278\pi\)
−0.913900 + 0.405939i \(0.866945\pi\)
\(992\) 981.799i 0.989717i
\(993\) 210.598 + 171.386i 0.212083 + 0.172594i
\(994\) 451.418 + 13.3170i 0.454143 + 0.0133974i
\(995\) −1039.99 600.439i −1.04522 0.603457i
\(996\) 299.314 + 48.1511i 0.300516 + 0.0483444i
\(997\) −76.0851 + 131.783i −0.0763140 + 0.132180i −0.901657 0.432452i \(-0.857648\pi\)
0.825343 + 0.564632i \(0.190982\pi\)
\(998\) −341.392 + 197.103i −0.342077 + 0.197498i
\(999\) −453.500 709.578i −0.453954 0.710288i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.3.j.b.23.10 yes 22
3.2 odd 2 189.3.j.b.44.2 22
7.2 even 3 441.3.r.g.50.10 22
7.3 odd 6 441.3.n.f.410.2 22
7.4 even 3 63.3.n.b.32.2 yes 22
7.5 odd 6 441.3.r.f.50.10 22
7.6 odd 2 441.3.j.f.275.10 22
9.2 odd 6 63.3.n.b.2.2 yes 22
9.7 even 3 189.3.n.b.170.10 22
21.11 odd 6 189.3.n.b.179.10 22
63.2 odd 6 441.3.r.g.344.10 22
63.11 odd 6 inner 63.3.j.b.11.2 22
63.20 even 6 441.3.n.f.128.2 22
63.25 even 3 189.3.j.b.116.10 22
63.38 even 6 441.3.j.f.263.2 22
63.47 even 6 441.3.r.f.344.10 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.j.b.11.2 22 63.11 odd 6 inner
63.3.j.b.23.10 yes 22 1.1 even 1 trivial
63.3.n.b.2.2 yes 22 9.2 odd 6
63.3.n.b.32.2 yes 22 7.4 even 3
189.3.j.b.44.2 22 3.2 odd 2
189.3.j.b.116.10 22 63.25 even 3
189.3.n.b.170.10 22 9.7 even 3
189.3.n.b.179.10 22 21.11 odd 6
441.3.j.f.263.2 22 63.38 even 6
441.3.j.f.275.10 22 7.6 odd 2
441.3.n.f.128.2 22 63.20 even 6
441.3.n.f.410.2 22 7.3 odd 6
441.3.r.f.50.10 22 7.5 odd 6
441.3.r.f.344.10 22 63.47 even 6
441.3.r.g.50.10 22 7.2 even 3
441.3.r.g.344.10 22 63.2 odd 6