Properties

Label 189.3.n.b.170.10
Level $189$
Weight $3$
Character 189.170
Analytic conductor $5.150$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,3,Mod(170,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.170");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 189.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.14987699641\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 170.10
Character \(\chi\) \(=\) 189.170
Dual form 189.3.n.b.179.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.79169 - 1.61178i) q^{2} +(3.19568 - 5.53509i) q^{4} -5.53294i q^{5} +(3.31972 + 6.16275i) q^{7} -7.70873i q^{8} +(-8.91790 - 15.4463i) q^{10} -17.6887i q^{11} +(2.03775 + 3.52949i) q^{13} +(19.2006 + 11.8538i) q^{14} +(0.357941 + 0.619972i) q^{16} +(-14.3348 + 8.27617i) q^{17} +(-3.92096 + 6.79130i) q^{19} +(-30.6253 - 17.6815i) q^{20} +(-28.5103 - 49.3813i) q^{22} +10.0676i q^{23} -5.61347 q^{25} +(11.3775 + 6.56882i) q^{26} +(44.7201 + 1.31926i) q^{28} +(39.9040 + 23.0386i) q^{29} +(-14.8117 + 25.6547i) q^{31} +(28.7023 + 16.5713i) q^{32} +(-26.6788 + 46.2090i) q^{34} +(34.0981 - 18.3678i) q^{35} +(15.5948 - 27.0110i) q^{37} +25.2789i q^{38} -42.6520 q^{40} +(-27.8184 + 16.0609i) q^{41} +(3.35243 - 5.80658i) q^{43} +(-97.9085 - 56.5275i) q^{44} +(16.2267 + 28.1055i) q^{46} +(14.2377 - 8.22012i) q^{47} +(-26.9589 + 40.9172i) q^{49} +(-15.6711 + 9.04769i) q^{50} +26.0480 q^{52} +(-32.5897 + 18.8157i) q^{53} -97.8706 q^{55} +(47.5070 - 25.5908i) q^{56} +148.533 q^{58} +(-82.3206 - 47.5278i) q^{59} +(36.8839 + 63.8848i) q^{61} +95.4932i q^{62} +103.974 q^{64} +(19.5285 - 11.2748i) q^{65} +(6.09545 - 10.5576i) q^{67} +105.792i q^{68} +(65.5865 - 106.236i) q^{70} +20.0140i q^{71} +(-11.4932 - 19.9068i) q^{73} -100.542i q^{74} +(25.0603 + 43.4057i) q^{76} +(109.011 - 58.7215i) q^{77} +(-69.4400 - 120.274i) q^{79} +(3.43027 - 1.98047i) q^{80} +(-51.7735 + 89.6743i) q^{82} +(-13.6928 - 7.90552i) q^{83} +(45.7916 + 79.3134i) q^{85} -21.6136i q^{86} -136.357 q^{88} +(-46.9444 - 27.1034i) q^{89} +(-14.9866 + 24.2750i) q^{91} +(55.7249 + 32.1728i) q^{92} +(26.4981 - 45.8960i) q^{94} +(37.5759 + 21.6944i) q^{95} +(86.1189 - 149.162i) q^{97} +(-9.31136 + 157.680i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 6 q^{2} + 12 q^{4} + 3 q^{7} + 25 q^{10} - 18 q^{13} + 90 q^{14} + 12 q^{16} - 6 q^{17} + 3 q^{19} + 39 q^{20} - 59 q^{22} - 114 q^{25} + 3 q^{26} + 34 q^{28} + 63 q^{29} - 29 q^{31} - 246 q^{32}+ \cdots - 483 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.79169 1.61178i 1.39584 0.805891i 0.401890 0.915688i \(-0.368353\pi\)
0.993954 + 0.109797i \(0.0350200\pi\)
\(3\) 0 0
\(4\) 3.19568 5.53509i 0.798921 1.38377i
\(5\) 5.53294i 1.10659i −0.832986 0.553294i \(-0.813370\pi\)
0.832986 0.553294i \(-0.186630\pi\)
\(6\) 0 0
\(7\) 3.31972 + 6.16275i 0.474246 + 0.880393i
\(8\) 7.70873i 0.963591i
\(9\) 0 0
\(10\) −8.91790 15.4463i −0.891790 1.54463i
\(11\) 17.6887i 1.60806i −0.594587 0.804032i \(-0.702684\pi\)
0.594587 0.804032i \(-0.297316\pi\)
\(12\) 0 0
\(13\) 2.03775 + 3.52949i 0.156750 + 0.271499i 0.933695 0.358070i \(-0.116565\pi\)
−0.776945 + 0.629569i \(0.783232\pi\)
\(14\) 19.2006 + 11.8538i 1.37147 + 0.846701i
\(15\) 0 0
\(16\) 0.357941 + 0.619972i 0.0223713 + 0.0387483i
\(17\) −14.3348 + 8.27617i −0.843221 + 0.486834i −0.858358 0.513052i \(-0.828515\pi\)
0.0151370 + 0.999885i \(0.495182\pi\)
\(18\) 0 0
\(19\) −3.92096 + 6.79130i −0.206366 + 0.357437i −0.950567 0.310519i \(-0.899497\pi\)
0.744201 + 0.667956i \(0.232830\pi\)
\(20\) −30.6253 17.6815i −1.53127 0.884077i
\(21\) 0 0
\(22\) −28.5103 49.3813i −1.29592 2.24461i
\(23\) 10.0676i 0.437720i 0.975756 + 0.218860i \(0.0702339\pi\)
−0.975756 + 0.218860i \(0.929766\pi\)
\(24\) 0 0
\(25\) −5.61347 −0.224539
\(26\) 11.3775 + 6.56882i 0.437597 + 0.252647i
\(27\) 0 0
\(28\) 44.7201 + 1.31926i 1.59715 + 0.0471165i
\(29\) 39.9040 + 23.0386i 1.37600 + 0.794434i 0.991675 0.128764i \(-0.0411011\pi\)
0.384324 + 0.923198i \(0.374434\pi\)
\(30\) 0 0
\(31\) −14.8117 + 25.6547i −0.477798 + 0.827570i −0.999676 0.0254498i \(-0.991898\pi\)
0.521878 + 0.853020i \(0.325232\pi\)
\(32\) 28.7023 + 16.5713i 0.896948 + 0.517853i
\(33\) 0 0
\(34\) −26.6788 + 46.2090i −0.784670 + 1.35909i
\(35\) 34.0981 18.3678i 0.974233 0.524795i
\(36\) 0 0
\(37\) 15.5948 27.0110i 0.421481 0.730026i −0.574604 0.818432i \(-0.694844\pi\)
0.996085 + 0.0884059i \(0.0281772\pi\)
\(38\) 25.2789i 0.665235i
\(39\) 0 0
\(40\) −42.6520 −1.06630
\(41\) −27.8184 + 16.0609i −0.678497 + 0.391730i −0.799288 0.600948i \(-0.794790\pi\)
0.120792 + 0.992678i \(0.461457\pi\)
\(42\) 0 0
\(43\) 3.35243 5.80658i 0.0779635 0.135037i −0.824408 0.565997i \(-0.808492\pi\)
0.902371 + 0.430960i \(0.141825\pi\)
\(44\) −97.9085 56.5275i −2.22519 1.28472i
\(45\) 0 0
\(46\) 16.2267 + 28.1055i 0.352755 + 0.610990i
\(47\) 14.2377 8.22012i 0.302929 0.174896i −0.340829 0.940125i \(-0.610708\pi\)
0.643758 + 0.765229i \(0.277374\pi\)
\(48\) 0 0
\(49\) −26.9589 + 40.9172i −0.550182 + 0.835045i
\(50\) −15.6711 + 9.04769i −0.313421 + 0.180954i
\(51\) 0 0
\(52\) 26.0480 0.500924
\(53\) −32.5897 + 18.8157i −0.614900 + 0.355013i −0.774881 0.632108i \(-0.782190\pi\)
0.159981 + 0.987120i \(0.448857\pi\)
\(54\) 0 0
\(55\) −97.8706 −1.77946
\(56\) 47.5070 25.5908i 0.848339 0.456979i
\(57\) 0 0
\(58\) 148.533 2.56091
\(59\) −82.3206 47.5278i −1.39527 0.805557i −0.401373 0.915915i \(-0.631467\pi\)
−0.993892 + 0.110358i \(0.964800\pi\)
\(60\) 0 0
\(61\) 36.8839 + 63.8848i 0.604655 + 1.04729i 0.992106 + 0.125402i \(0.0400222\pi\)
−0.387451 + 0.921890i \(0.626644\pi\)
\(62\) 95.4932i 1.54021i
\(63\) 0 0
\(64\) 103.974 1.62459
\(65\) 19.5285 11.2748i 0.300438 0.173458i
\(66\) 0 0
\(67\) 6.09545 10.5576i 0.0909769 0.157577i −0.816946 0.576715i \(-0.804334\pi\)
0.907922 + 0.419138i \(0.137668\pi\)
\(68\) 105.792i 1.55577i
\(69\) 0 0
\(70\) 65.5865 106.236i 0.936950 1.51766i
\(71\) 20.0140i 0.281887i 0.990018 + 0.140944i \(0.0450136\pi\)
−0.990018 + 0.140944i \(0.954986\pi\)
\(72\) 0 0
\(73\) −11.4932 19.9068i −0.157441 0.272696i 0.776504 0.630112i \(-0.216991\pi\)
−0.933945 + 0.357416i \(0.883658\pi\)
\(74\) 100.542i 1.35867i
\(75\) 0 0
\(76\) 25.0603 + 43.4057i 0.329741 + 0.571128i
\(77\) 109.011 58.7215i 1.41573 0.762617i
\(78\) 0 0
\(79\) −69.4400 120.274i −0.878988 1.52245i −0.852453 0.522804i \(-0.824886\pi\)
−0.0265350 0.999648i \(-0.508447\pi\)
\(80\) 3.43027 1.98047i 0.0428784 0.0247559i
\(81\) 0 0
\(82\) −51.7735 + 89.6743i −0.631384 + 1.09359i
\(83\) −13.6928 7.90552i −0.164973 0.0952472i 0.415240 0.909712i \(-0.363697\pi\)
−0.580213 + 0.814465i \(0.697031\pi\)
\(84\) 0 0
\(85\) 45.7916 + 79.3134i 0.538725 + 0.933099i
\(86\) 21.6136i 0.251320i
\(87\) 0 0
\(88\) −136.357 −1.54952
\(89\) −46.9444 27.1034i −0.527466 0.304532i 0.212518 0.977157i \(-0.431834\pi\)
−0.739984 + 0.672625i \(0.765167\pi\)
\(90\) 0 0
\(91\) −14.9866 + 24.2750i −0.164688 + 0.266759i
\(92\) 55.7249 + 32.1728i 0.605705 + 0.349704i
\(93\) 0 0
\(94\) 26.4981 45.8960i 0.281894 0.488256i
\(95\) 37.5759 + 21.6944i 0.395536 + 0.228363i
\(96\) 0 0
\(97\) 86.1189 149.162i 0.887823 1.53776i 0.0453802 0.998970i \(-0.485550\pi\)
0.842443 0.538785i \(-0.181117\pi\)
\(98\) −9.31136 + 157.680i −0.0950139 + 1.60898i
\(99\) 0 0
\(100\) −17.9389 + 31.0710i −0.179389 + 0.310710i
\(101\) 17.3176i 0.171461i 0.996318 + 0.0857307i \(0.0273225\pi\)
−0.996318 + 0.0857307i \(0.972678\pi\)
\(102\) 0 0
\(103\) −27.5997 −0.267958 −0.133979 0.990984i \(-0.542776\pi\)
−0.133979 + 0.990984i \(0.542776\pi\)
\(104\) 27.2079 15.7085i 0.261614 0.151043i
\(105\) 0 0
\(106\) −60.6535 + 105.055i −0.572203 + 0.991085i
\(107\) −106.089 61.2506i −0.991488 0.572436i −0.0857691 0.996315i \(-0.527335\pi\)
−0.905719 + 0.423879i \(0.860668\pi\)
\(108\) 0 0
\(109\) −17.0725 29.5705i −0.156629 0.271289i 0.777022 0.629473i \(-0.216729\pi\)
−0.933651 + 0.358184i \(0.883396\pi\)
\(110\) −273.224 + 157.746i −2.48386 + 1.43405i
\(111\) 0 0
\(112\) −2.63247 + 4.26403i −0.0235042 + 0.0380717i
\(113\) −67.4250 + 38.9278i −0.596681 + 0.344494i −0.767735 0.640768i \(-0.778616\pi\)
0.171054 + 0.985262i \(0.445283\pi\)
\(114\) 0 0
\(115\) 55.7033 0.484377
\(116\) 255.041 147.248i 2.19863 1.26938i
\(117\) 0 0
\(118\) −306.418 −2.59676
\(119\) −98.5913 60.8669i −0.828498 0.511487i
\(120\) 0 0
\(121\) −191.890 −1.58587
\(122\) 205.937 + 118.898i 1.68801 + 0.974572i
\(123\) 0 0
\(124\) 94.6673 + 163.968i 0.763446 + 1.32233i
\(125\) 107.265i 0.858117i
\(126\) 0 0
\(127\) 14.0742 0.110821 0.0554103 0.998464i \(-0.482353\pi\)
0.0554103 + 0.998464i \(0.482353\pi\)
\(128\) 175.453 101.298i 1.37073 0.791390i
\(129\) 0 0
\(130\) 36.3449 62.9512i 0.279576 0.484240i
\(131\) 22.2699i 0.169999i 0.996381 + 0.0849995i \(0.0270889\pi\)
−0.996381 + 0.0849995i \(0.972911\pi\)
\(132\) 0 0
\(133\) −54.8695 1.61868i −0.412553 0.0121705i
\(134\) 39.2982i 0.293270i
\(135\) 0 0
\(136\) 63.7988 + 110.503i 0.469109 + 0.812520i
\(137\) 37.0861i 0.270701i −0.990798 0.135351i \(-0.956784\pi\)
0.990798 0.135351i \(-0.0432161\pi\)
\(138\) 0 0
\(139\) 70.5358 + 122.172i 0.507451 + 0.878932i 0.999963 + 0.00862568i \(0.00274567\pi\)
−0.492511 + 0.870306i \(0.663921\pi\)
\(140\) 7.29941 247.434i 0.0521386 1.76739i
\(141\) 0 0
\(142\) 32.2582 + 55.8728i 0.227170 + 0.393471i
\(143\) 62.4320 36.0451i 0.436587 0.252064i
\(144\) 0 0
\(145\) 127.471 220.787i 0.879111 1.52267i
\(146\) −64.1710 37.0491i −0.439527 0.253761i
\(147\) 0 0
\(148\) −99.6720 172.637i −0.673459 1.16647i
\(149\) 115.718i 0.776631i 0.921526 + 0.388315i \(0.126943\pi\)
−0.921526 + 0.388315i \(0.873057\pi\)
\(150\) 0 0
\(151\) −150.316 −0.995469 −0.497734 0.867330i \(-0.665835\pi\)
−0.497734 + 0.867330i \(0.665835\pi\)
\(152\) 52.3523 + 30.2256i 0.344423 + 0.198853i
\(153\) 0 0
\(154\) 209.678 339.634i 1.36155 2.20542i
\(155\) 141.946 + 81.9525i 0.915780 + 0.528726i
\(156\) 0 0
\(157\) 137.028 237.339i 0.872788 1.51171i 0.0136883 0.999906i \(-0.495643\pi\)
0.859100 0.511808i \(-0.171024\pi\)
\(158\) −387.710 223.844i −2.45386 1.41674i
\(159\) 0 0
\(160\) 91.6881 158.808i 0.573051 0.992553i
\(161\) −62.0439 + 33.4215i −0.385366 + 0.207587i
\(162\) 0 0
\(163\) −111.326 + 192.822i −0.682981 + 1.18296i 0.291085 + 0.956697i \(0.405984\pi\)
−0.974067 + 0.226261i \(0.927350\pi\)
\(164\) 205.303i 1.25185i
\(165\) 0 0
\(166\) −50.9679 −0.307035
\(167\) −62.7878 + 36.2506i −0.375975 + 0.217069i −0.676066 0.736841i \(-0.736316\pi\)
0.300091 + 0.953911i \(0.402983\pi\)
\(168\) 0 0
\(169\) 76.1951 131.974i 0.450859 0.780910i
\(170\) 255.672 + 147.612i 1.50395 + 0.868307i
\(171\) 0 0
\(172\) −21.4266 37.1120i −0.124573 0.215768i
\(173\) 182.881 105.587i 1.05712 0.610328i 0.132485 0.991185i \(-0.457704\pi\)
0.924634 + 0.380857i \(0.124371\pi\)
\(174\) 0 0
\(175\) −18.6351 34.5944i −0.106487 0.197682i
\(176\) 10.9665 6.33151i 0.0623096 0.0359745i
\(177\) 0 0
\(178\) −174.739 −0.981680
\(179\) 69.5967 40.1817i 0.388809 0.224479i −0.292835 0.956163i \(-0.594599\pi\)
0.681644 + 0.731684i \(0.261265\pi\)
\(180\) 0 0
\(181\) 122.944 0.679250 0.339625 0.940561i \(-0.389700\pi\)
0.339625 + 0.940561i \(0.389700\pi\)
\(182\) −2.71178 + 91.9235i −0.0148999 + 0.505074i
\(183\) 0 0
\(184\) 77.6082 0.421784
\(185\) −149.450 86.2850i −0.807838 0.466406i
\(186\) 0 0
\(187\) 146.395 + 253.563i 0.782859 + 1.35595i
\(188\) 105.076i 0.558913i
\(189\) 0 0
\(190\) 139.867 0.736141
\(191\) −307.863 + 177.745i −1.61185 + 0.930602i −0.622909 + 0.782294i \(0.714049\pi\)
−0.988941 + 0.148308i \(0.952617\pi\)
\(192\) 0 0
\(193\) 19.8296 34.3459i 0.102744 0.177958i −0.810070 0.586333i \(-0.800571\pi\)
0.912814 + 0.408375i \(0.133904\pi\)
\(194\) 555.219i 2.86196i
\(195\) 0 0
\(196\) 140.328 + 279.978i 0.715959 + 1.42846i
\(197\) 130.634i 0.663119i −0.943434 0.331559i \(-0.892425\pi\)
0.943434 0.331559i \(-0.107575\pi\)
\(198\) 0 0
\(199\) 108.521 + 187.964i 0.545331 + 0.944540i 0.998586 + 0.0531596i \(0.0169292\pi\)
−0.453255 + 0.891381i \(0.649737\pi\)
\(200\) 43.2727i 0.216364i
\(201\) 0 0
\(202\) 27.9122 + 48.3454i 0.138179 + 0.239333i
\(203\) −9.51093 + 322.400i −0.0468519 + 1.58818i
\(204\) 0 0
\(205\) 88.8643 + 153.917i 0.433484 + 0.750817i
\(206\) −77.0498 + 44.4847i −0.374028 + 0.215945i
\(207\) 0 0
\(208\) −1.45879 + 2.52670i −0.00701341 + 0.0121476i
\(209\) 120.129 + 69.3566i 0.574781 + 0.331850i
\(210\) 0 0
\(211\) 54.6113 + 94.5895i 0.258821 + 0.448292i 0.965926 0.258817i \(-0.0833326\pi\)
−0.707105 + 0.707108i \(0.749999\pi\)
\(212\) 240.516i 1.13451i
\(213\) 0 0
\(214\) −394.891 −1.84528
\(215\) −32.1275 18.5488i −0.149430 0.0862736i
\(216\) 0 0
\(217\) −207.274 6.11468i −0.955180 0.0281782i
\(218\) −95.3224 55.0344i −0.437259 0.252451i
\(219\) 0 0
\(220\) −312.763 + 541.722i −1.42165 + 2.46237i
\(221\) −58.4213 33.7295i −0.264350 0.152622i
\(222\) 0 0
\(223\) −93.3685 + 161.719i −0.418693 + 0.725197i −0.995808 0.0914653i \(-0.970845\pi\)
0.577115 + 0.816663i \(0.304178\pi\)
\(224\) −6.84107 + 231.897i −0.0305405 + 1.03526i
\(225\) 0 0
\(226\) −125.486 + 217.349i −0.555249 + 0.961720i
\(227\) 202.548i 0.892280i −0.894963 0.446140i \(-0.852798\pi\)
0.894963 0.446140i \(-0.147202\pi\)
\(228\) 0 0
\(229\) −79.2731 −0.346171 −0.173085 0.984907i \(-0.555374\pi\)
−0.173085 + 0.984907i \(0.555374\pi\)
\(230\) 155.506 89.7816i 0.676114 0.390355i
\(231\) 0 0
\(232\) 177.598 307.609i 0.765509 1.32590i
\(233\) 282.430 + 163.061i 1.21215 + 0.699833i 0.963227 0.268690i \(-0.0865909\pi\)
0.248921 + 0.968524i \(0.419924\pi\)
\(234\) 0 0
\(235\) −45.4814 78.7762i −0.193538 0.335218i
\(236\) −526.142 + 303.768i −2.22941 + 1.28715i
\(237\) 0 0
\(238\) −373.340 11.0137i −1.56866 0.0462761i
\(239\) 210.918 121.774i 0.882503 0.509514i 0.0110203 0.999939i \(-0.496492\pi\)
0.871483 + 0.490426i \(0.163159\pi\)
\(240\) 0 0
\(241\) 28.3405 0.117595 0.0587976 0.998270i \(-0.481273\pi\)
0.0587976 + 0.998270i \(0.481273\pi\)
\(242\) −535.697 + 309.285i −2.21362 + 1.27804i
\(243\) 0 0
\(244\) 471.478 1.93229
\(245\) 226.392 + 149.162i 0.924051 + 0.608826i
\(246\) 0 0
\(247\) −31.9597 −0.129392
\(248\) 197.765 + 114.180i 0.797440 + 0.460402i
\(249\) 0 0
\(250\) −172.887 299.449i −0.691549 1.19780i
\(251\) 140.132i 0.558294i 0.960248 + 0.279147i \(0.0900516\pi\)
−0.960248 + 0.279147i \(0.909948\pi\)
\(252\) 0 0
\(253\) 178.082 0.703882
\(254\) 39.2909 22.6846i 0.154688 0.0893094i
\(255\) 0 0
\(256\) 118.593 205.409i 0.463253 0.802378i
\(257\) 110.672i 0.430629i 0.976545 + 0.215315i \(0.0690777\pi\)
−0.976545 + 0.215315i \(0.930922\pi\)
\(258\) 0 0
\(259\) 218.232 + 6.43794i 0.842595 + 0.0248569i
\(260\) 144.122i 0.554316i
\(261\) 0 0
\(262\) 35.8942 + 62.1705i 0.137001 + 0.237292i
\(263\) 49.3684i 0.187713i 0.995586 + 0.0938563i \(0.0299194\pi\)
−0.995586 + 0.0938563i \(0.970081\pi\)
\(264\) 0 0
\(265\) 104.106 + 180.317i 0.392853 + 0.680441i
\(266\) −155.788 + 83.9189i −0.585668 + 0.315485i
\(267\) 0 0
\(268\) −38.9583 67.4777i −0.145367 0.251783i
\(269\) −162.040 + 93.5538i −0.602379 + 0.347784i −0.769977 0.638072i \(-0.779732\pi\)
0.167598 + 0.985855i \(0.446399\pi\)
\(270\) 0 0
\(271\) 108.146 187.315i 0.399064 0.691199i −0.594547 0.804061i \(-0.702668\pi\)
0.993611 + 0.112862i \(0.0360018\pi\)
\(272\) −10.2620 5.92476i −0.0377279 0.0217822i
\(273\) 0 0
\(274\) −59.7747 103.533i −0.218156 0.377857i
\(275\) 99.2950i 0.361073i
\(276\) 0 0
\(277\) 78.1235 0.282034 0.141017 0.990007i \(-0.454963\pi\)
0.141017 + 0.990007i \(0.454963\pi\)
\(278\) 393.828 + 227.377i 1.41665 + 0.817901i
\(279\) 0 0
\(280\) −141.593 262.853i −0.505688 0.938762i
\(281\) 385.051 + 222.309i 1.37029 + 0.791135i 0.990964 0.134129i \(-0.0428237\pi\)
0.379323 + 0.925264i \(0.376157\pi\)
\(282\) 0 0
\(283\) 64.2122 111.219i 0.226898 0.392999i −0.729989 0.683459i \(-0.760475\pi\)
0.956887 + 0.290460i \(0.0938082\pi\)
\(284\) 110.779 + 63.9584i 0.390068 + 0.225206i
\(285\) 0 0
\(286\) 116.194 201.254i 0.406272 0.703684i
\(287\) −191.329 118.120i −0.666650 0.411567i
\(288\) 0 0
\(289\) −7.50994 + 13.0076i −0.0259859 + 0.0450090i
\(290\) 821.823i 2.83387i
\(291\) 0 0
\(292\) −146.915 −0.503133
\(293\) 42.6510 24.6246i 0.145567 0.0840429i −0.425448 0.904983i \(-0.639883\pi\)
0.571014 + 0.820940i \(0.306550\pi\)
\(294\) 0 0
\(295\) −262.969 + 455.475i −0.891420 + 1.54398i
\(296\) −208.220 120.216i −0.703446 0.406135i
\(297\) 0 0
\(298\) 186.512 + 323.049i 0.625880 + 1.08406i
\(299\) −35.5334 + 20.5152i −0.118841 + 0.0686127i
\(300\) 0 0
\(301\) 46.9136 + 1.38397i 0.155859 + 0.00459792i
\(302\) −419.635 + 242.276i −1.38952 + 0.802239i
\(303\) 0 0
\(304\) −5.61389 −0.0184667
\(305\) 353.471 204.077i 1.15892 0.669104i
\(306\) 0 0
\(307\) −387.296 −1.26155 −0.630776 0.775965i \(-0.717263\pi\)
−0.630776 + 0.775965i \(0.717263\pi\)
\(308\) 23.3360 791.041i 0.0757664 2.56831i
\(309\) 0 0
\(310\) 528.358 1.70438
\(311\) 87.5525 + 50.5485i 0.281519 + 0.162535i 0.634111 0.773242i \(-0.281366\pi\)
−0.352592 + 0.935777i \(0.614700\pi\)
\(312\) 0 0
\(313\) −182.396 315.918i −0.582733 1.00932i −0.995154 0.0983303i \(-0.968650\pi\)
0.412420 0.910994i \(-0.364684\pi\)
\(314\) 883.436i 2.81349i
\(315\) 0 0
\(316\) −887.634 −2.80897
\(317\) −28.7096 + 16.5755i −0.0905665 + 0.0522886i −0.544599 0.838696i \(-0.683318\pi\)
0.454033 + 0.890985i \(0.349985\pi\)
\(318\) 0 0
\(319\) 407.522 705.849i 1.27750 2.21269i
\(320\) 575.281i 1.79775i
\(321\) 0 0
\(322\) −119.339 + 193.304i −0.370618 + 0.600322i
\(323\) 129.802i 0.401864i
\(324\) 0 0
\(325\) −11.4388 19.8127i −0.0351965 0.0609621i
\(326\) 717.733i 2.20163i
\(327\) 0 0
\(328\) 123.809 + 214.444i 0.377468 + 0.653794i
\(329\) 97.9235 + 60.4546i 0.297640 + 0.183753i
\(330\) 0 0
\(331\) 45.2538 + 78.3820i 0.136719 + 0.236804i 0.926253 0.376903i \(-0.123011\pi\)
−0.789534 + 0.613707i \(0.789678\pi\)
\(332\) −87.5154 + 50.5271i −0.263601 + 0.152190i
\(333\) 0 0
\(334\) −116.856 + 202.401i −0.349869 + 0.605990i
\(335\) −58.4148 33.7258i −0.174373 0.100674i
\(336\) 0 0
\(337\) 216.839 + 375.576i 0.643438 + 1.11447i 0.984660 + 0.174485i \(0.0558261\pi\)
−0.341221 + 0.939983i \(0.610841\pi\)
\(338\) 491.240i 1.45337i
\(339\) 0 0
\(340\) 585.342 1.72159
\(341\) 453.798 + 262.000i 1.33079 + 0.768329i
\(342\) 0 0
\(343\) −341.658 30.3076i −0.996089 0.0883603i
\(344\) −44.7614 25.8430i −0.130120 0.0751250i
\(345\) 0 0
\(346\) 340.365 589.530i 0.983715 1.70384i
\(347\) 10.1281 + 5.84745i 0.0291876 + 0.0168514i 0.514523 0.857477i \(-0.327969\pi\)
−0.485335 + 0.874328i \(0.661302\pi\)
\(348\) 0 0
\(349\) 91.7075 158.842i 0.262772 0.455135i −0.704205 0.709996i \(-0.748697\pi\)
0.966978 + 0.254862i \(0.0820299\pi\)
\(350\) −107.782 66.5410i −0.307949 0.190117i
\(351\) 0 0
\(352\) 293.125 507.707i 0.832741 1.44235i
\(353\) 68.0833i 0.192871i 0.995339 + 0.0964353i \(0.0307441\pi\)
−0.995339 + 0.0964353i \(0.969256\pi\)
\(354\) 0 0
\(355\) 110.736 0.311933
\(356\) −300.039 + 173.228i −0.842807 + 0.486595i
\(357\) 0 0
\(358\) 129.528 224.350i 0.361811 0.626675i
\(359\) −386.169 222.955i −1.07568 0.621044i −0.145952 0.989292i \(-0.546625\pi\)
−0.929728 + 0.368247i \(0.879958\pi\)
\(360\) 0 0
\(361\) 149.752 + 259.378i 0.414826 + 0.718500i
\(362\) 343.222 198.159i 0.948127 0.547401i
\(363\) 0 0
\(364\) 86.4721 + 160.527i 0.237561 + 0.441009i
\(365\) −110.143 + 63.5913i −0.301763 + 0.174223i
\(366\) 0 0
\(367\) 126.685 0.345190 0.172595 0.984993i \(-0.444785\pi\)
0.172595 + 0.984993i \(0.444785\pi\)
\(368\) −6.24161 + 3.60360i −0.0169609 + 0.00979238i
\(369\) 0 0
\(370\) −556.291 −1.50349
\(371\) −224.145 138.379i −0.604164 0.372990i
\(372\) 0 0
\(373\) −612.329 −1.64163 −0.820817 0.571192i \(-0.806481\pi\)
−0.820817 + 0.571192i \(0.806481\pi\)
\(374\) 817.377 + 471.913i 2.18550 + 1.26180i
\(375\) 0 0
\(376\) −63.3667 109.754i −0.168528 0.291900i
\(377\) 187.787i 0.498110i
\(378\) 0 0
\(379\) 410.847 1.08403 0.542015 0.840369i \(-0.317662\pi\)
0.542015 + 0.840369i \(0.317662\pi\)
\(380\) 240.161 138.657i 0.632003 0.364887i
\(381\) 0 0
\(382\) −572.973 + 992.418i −1.49993 + 2.59795i
\(383\) 220.118i 0.574720i 0.957823 + 0.287360i \(0.0927775\pi\)
−0.957823 + 0.287360i \(0.907222\pi\)
\(384\) 0 0
\(385\) −324.903 603.152i −0.843903 1.56663i
\(386\) 127.844i 0.331203i
\(387\) 0 0
\(388\) −550.417 953.351i −1.41860 2.45709i
\(389\) 172.259i 0.442824i −0.975180 0.221412i \(-0.928933\pi\)
0.975180 0.221412i \(-0.0710666\pi\)
\(390\) 0 0
\(391\) −83.3209 144.316i −0.213097 0.369095i
\(392\) 315.420 + 207.819i 0.804642 + 0.530151i
\(393\) 0 0
\(394\) −210.554 364.691i −0.534402 0.925611i
\(395\) −665.468 + 384.208i −1.68473 + 0.972678i
\(396\) 0 0
\(397\) −185.521 + 321.332i −0.467308 + 0.809401i −0.999302 0.0373470i \(-0.988109\pi\)
0.531995 + 0.846748i \(0.321443\pi\)
\(398\) 605.912 + 349.824i 1.52239 + 0.878954i
\(399\) 0 0
\(400\) −2.00929 3.48020i −0.00502323 0.00870049i
\(401\) 299.417i 0.746675i −0.927696 0.373338i \(-0.878213\pi\)
0.927696 0.373338i \(-0.121787\pi\)
\(402\) 0 0
\(403\) −120.730 −0.299579
\(404\) 95.8544 + 55.3416i 0.237263 + 0.136984i
\(405\) 0 0
\(406\) 493.087 + 915.370i 1.21450 + 2.25460i
\(407\) −477.788 275.851i −1.17393 0.677767i
\(408\) 0 0
\(409\) 187.201 324.241i 0.457703 0.792766i −0.541136 0.840935i \(-0.682005\pi\)
0.998839 + 0.0481696i \(0.0153388\pi\)
\(410\) 496.163 + 286.460i 1.21015 + 0.698682i
\(411\) 0 0
\(412\) −88.2000 + 152.767i −0.214078 + 0.370793i
\(413\) 19.6208 665.100i 0.0475079 1.61041i
\(414\) 0 0
\(415\) −43.7408 + 75.7613i −0.105399 + 0.182557i
\(416\) 135.073i 0.324694i
\(417\) 0 0
\(418\) 447.151 1.06974
\(419\) −350.317 + 202.256i −0.836080 + 0.482711i −0.855930 0.517092i \(-0.827014\pi\)
0.0198501 + 0.999803i \(0.493681\pi\)
\(420\) 0 0
\(421\) −231.002 + 400.107i −0.548698 + 0.950372i 0.449666 + 0.893197i \(0.351543\pi\)
−0.998364 + 0.0571757i \(0.981790\pi\)
\(422\) 304.916 + 176.043i 0.722549 + 0.417164i
\(423\) 0 0
\(424\) 145.045 + 251.225i 0.342087 + 0.592512i
\(425\) 80.4677 46.4580i 0.189336 0.109313i
\(426\) 0 0
\(427\) −271.262 + 439.386i −0.635274 + 1.02901i
\(428\) −678.055 + 391.475i −1.58424 + 0.914662i
\(429\) 0 0
\(430\) −119.587 −0.278108
\(431\) 197.559 114.061i 0.458374 0.264643i −0.252986 0.967470i \(-0.581413\pi\)
0.711360 + 0.702827i \(0.248079\pi\)
\(432\) 0 0
\(433\) 777.626 1.79590 0.897951 0.440095i \(-0.145055\pi\)
0.897951 + 0.440095i \(0.145055\pi\)
\(434\) −588.500 + 317.010i −1.35599 + 0.730439i
\(435\) 0 0
\(436\) −218.234 −0.500536
\(437\) −68.3719 39.4745i −0.156457 0.0903307i
\(438\) 0 0
\(439\) −34.4006 59.5836i −0.0783612 0.135726i 0.824182 0.566325i \(-0.191635\pi\)
−0.902543 + 0.430600i \(0.858302\pi\)
\(440\) 754.458i 1.71468i
\(441\) 0 0
\(442\) −217.459 −0.491988
\(443\) 180.419 104.165i 0.407267 0.235136i −0.282348 0.959312i \(-0.591113\pi\)
0.689615 + 0.724176i \(0.257780\pi\)
\(444\) 0 0
\(445\) −149.961 + 259.741i −0.336992 + 0.583687i
\(446\) 601.959i 1.34968i
\(447\) 0 0
\(448\) 345.164 + 640.765i 0.770455 + 1.43028i
\(449\) 259.045i 0.576937i 0.957489 + 0.288469i \(0.0931461\pi\)
−0.957489 + 0.288469i \(0.906854\pi\)
\(450\) 0 0
\(451\) 284.097 + 492.071i 0.629927 + 1.09107i
\(452\) 497.604i 1.10089i
\(453\) 0 0
\(454\) −326.463 565.450i −0.719081 1.24548i
\(455\) 134.312 + 82.9199i 0.295192 + 0.182242i
\(456\) 0 0
\(457\) −79.7186 138.077i −0.174439 0.302137i 0.765528 0.643403i \(-0.222478\pi\)
−0.939967 + 0.341265i \(0.889144\pi\)
\(458\) −221.306 + 127.771i −0.483201 + 0.278976i
\(459\) 0 0
\(460\) 178.010 308.323i 0.386979 0.670267i
\(461\) 176.910 + 102.139i 0.383752 + 0.221559i 0.679449 0.733722i \(-0.262219\pi\)
−0.295697 + 0.955282i \(0.595552\pi\)
\(462\) 0 0
\(463\) −381.105 660.092i −0.823120 1.42569i −0.903348 0.428909i \(-0.858898\pi\)
0.0802276 0.996777i \(-0.474435\pi\)
\(464\) 32.9858i 0.0710901i
\(465\) 0 0
\(466\) 1051.28 2.25596
\(467\) −462.046 266.762i −0.989391 0.571225i −0.0842988 0.996441i \(-0.526865\pi\)
−0.905092 + 0.425215i \(0.860198\pi\)
\(468\) 0 0
\(469\) 85.2993 + 2.51636i 0.181875 + 0.00536538i
\(470\) −253.940 146.612i −0.540298 0.311941i
\(471\) 0 0
\(472\) −366.379 + 634.588i −0.776227 + 1.34447i
\(473\) −102.711 59.3001i −0.217148 0.125370i
\(474\) 0 0
\(475\) 22.0102 38.1228i 0.0463372 0.0802584i
\(476\) −651.970 + 351.200i −1.36969 + 0.737815i
\(477\) 0 0
\(478\) 392.545 679.909i 0.821225 1.42240i
\(479\) 604.516i 1.26204i −0.775768 0.631019i \(-0.782637\pi\)
0.775768 0.631019i \(-0.217363\pi\)
\(480\) 0 0
\(481\) 127.113 0.264268
\(482\) 79.1177 45.6787i 0.164145 0.0947690i
\(483\) 0 0
\(484\) −613.220 + 1062.13i −1.26698 + 2.19448i
\(485\) −825.306 476.491i −1.70166 0.982455i
\(486\) 0 0
\(487\) −78.1017 135.276i −0.160373 0.277774i 0.774629 0.632415i \(-0.217936\pi\)
−0.935002 + 0.354641i \(0.884603\pi\)
\(488\) 492.471 284.328i 1.00916 0.582640i
\(489\) 0 0
\(490\) 872.434 + 51.5192i 1.78048 + 0.105141i
\(491\) 346.903 200.285i 0.706523 0.407911i −0.103249 0.994656i \(-0.532924\pi\)
0.809772 + 0.586744i \(0.199591\pi\)
\(492\) 0 0
\(493\) −762.685 −1.54703
\(494\) −89.2216 + 51.5121i −0.180611 + 0.104276i
\(495\) 0 0
\(496\) −21.2069 −0.0427559
\(497\) −123.341 + 66.4408i −0.248171 + 0.133684i
\(498\) 0 0
\(499\) −122.289 −0.245068 −0.122534 0.992464i \(-0.539102\pi\)
−0.122534 + 0.992464i \(0.539102\pi\)
\(500\) −593.719 342.784i −1.18744 0.685567i
\(501\) 0 0
\(502\) 225.862 + 391.204i 0.449924 + 0.779291i
\(503\) 786.814i 1.56424i 0.623126 + 0.782121i \(0.285862\pi\)
−0.623126 + 0.782121i \(0.714138\pi\)
\(504\) 0 0
\(505\) 95.8173 0.189737
\(506\) 497.150 287.030i 0.982510 0.567252i
\(507\) 0 0
\(508\) 44.9768 77.9021i 0.0885370 0.153351i
\(509\) 902.823i 1.77372i −0.462040 0.886859i \(-0.652882\pi\)
0.462040 0.886859i \(-0.347118\pi\)
\(510\) 0 0
\(511\) 84.5265 136.915i 0.165414 0.267935i
\(512\) 45.8004i 0.0894539i
\(513\) 0 0
\(514\) 178.379 + 308.961i 0.347040 + 0.601092i
\(515\) 152.708i 0.296520i
\(516\) 0 0
\(517\) −145.403 251.846i −0.281244 0.487129i
\(518\) 619.612 333.770i 1.19616 0.644343i
\(519\) 0 0
\(520\) −86.9141 150.540i −0.167142 0.289499i
\(521\) 442.743 255.618i 0.849795 0.490630i −0.0107865 0.999942i \(-0.503434\pi\)
0.860582 + 0.509312i \(0.170100\pi\)
\(522\) 0 0
\(523\) 489.654 848.105i 0.936240 1.62162i 0.163833 0.986488i \(-0.447614\pi\)
0.772407 0.635128i \(-0.219053\pi\)
\(524\) 123.266 + 71.1675i 0.235240 + 0.135816i
\(525\) 0 0
\(526\) 79.5711 + 137.821i 0.151276 + 0.262018i
\(527\) 490.338i 0.930432i
\(528\) 0 0
\(529\) 427.644 0.808401
\(530\) 581.263 + 335.592i 1.09672 + 0.633193i
\(531\) 0 0
\(532\) −184.305 + 298.535i −0.346438 + 0.561156i
\(533\) −113.374 65.4564i −0.212709 0.122807i
\(534\) 0 0
\(535\) −338.896 + 586.986i −0.633451 + 1.09717i
\(536\) −81.3860 46.9882i −0.151840 0.0876646i
\(537\) 0 0
\(538\) −301.577 + 522.346i −0.560552 + 0.970904i
\(539\) 723.772 + 476.868i 1.34280 + 0.884728i
\(540\) 0 0
\(541\) 350.265 606.676i 0.647439 1.12140i −0.336293 0.941757i \(-0.609173\pi\)
0.983732 0.179640i \(-0.0574934\pi\)
\(542\) 697.234i 1.28641i
\(543\) 0 0
\(544\) −548.588 −1.00843
\(545\) −163.612 + 94.4613i −0.300205 + 0.173324i
\(546\) 0 0
\(547\) 294.015 509.248i 0.537504 0.930984i −0.461534 0.887123i \(-0.652701\pi\)
0.999038 0.0438616i \(-0.0139660\pi\)
\(548\) −205.275 118.515i −0.374589 0.216269i
\(549\) 0 0
\(550\) 160.042 + 277.201i 0.290985 + 0.504001i
\(551\) −312.924 + 180.667i −0.567920 + 0.327889i
\(552\) 0 0
\(553\) 510.695 827.216i 0.923499 1.49587i
\(554\) 218.097 125.918i 0.393676 0.227289i
\(555\) 0 0
\(556\) 901.640 1.62165
\(557\) 347.042 200.365i 0.623055 0.359721i −0.155002 0.987914i \(-0.549539\pi\)
0.778057 + 0.628193i \(0.216205\pi\)
\(558\) 0 0
\(559\) 27.3257 0.0488831
\(560\) 23.5927 + 14.5653i 0.0421298 + 0.0260095i
\(561\) 0 0
\(562\) 1433.26 2.55028
\(563\) 78.9486 + 45.5810i 0.140228 + 0.0809609i 0.568473 0.822702i \(-0.307534\pi\)
−0.428244 + 0.903663i \(0.640868\pi\)
\(564\) 0 0
\(565\) 215.385 + 373.058i 0.381213 + 0.660281i
\(566\) 413.984i 0.731421i
\(567\) 0 0
\(568\) 154.282 0.271624
\(569\) −255.596 + 147.568i −0.449202 + 0.259347i −0.707493 0.706720i \(-0.750174\pi\)
0.258291 + 0.966067i \(0.416841\pi\)
\(570\) 0 0
\(571\) −457.407 + 792.252i −0.801062 + 1.38748i 0.117855 + 0.993031i \(0.462398\pi\)
−0.918917 + 0.394450i \(0.870935\pi\)
\(572\) 460.756i 0.805517i
\(573\) 0 0
\(574\) −724.513 21.3735i −1.26222 0.0372360i
\(575\) 56.5140i 0.0982852i
\(576\) 0 0
\(577\) −267.301 462.978i −0.463259 0.802389i 0.535862 0.844306i \(-0.319987\pi\)
−0.999121 + 0.0419171i \(0.986653\pi\)
\(578\) 48.4175i 0.0837674i
\(579\) 0 0
\(580\) −814.715 1411.13i −1.40468 2.43298i
\(581\) 3.26361 110.629i 0.00561722 0.190412i
\(582\) 0 0
\(583\) 332.825 + 576.469i 0.570883 + 0.988798i
\(584\) −153.456 + 88.5981i −0.262768 + 0.151709i
\(585\) 0 0
\(586\) 79.3789 137.488i 0.135459 0.234622i
\(587\) −299.889 173.141i −0.510884 0.294959i 0.222313 0.974975i \(-0.428639\pi\)
−0.733197 + 0.680016i \(0.761973\pi\)
\(588\) 0 0
\(589\) −116.152 201.182i −0.197203 0.341565i
\(590\) 1695.39i 2.87355i
\(591\) 0 0
\(592\) 22.3281 0.0377163
\(593\) 3.55214 + 2.05083i 0.00599012 + 0.00345840i 0.502992 0.864291i \(-0.332232\pi\)
−0.497002 + 0.867749i \(0.665566\pi\)
\(594\) 0 0
\(595\) −336.773 + 545.500i −0.566005 + 0.916807i
\(596\) 640.509 + 369.798i 1.07468 + 0.620467i
\(597\) 0 0
\(598\) −66.1320 + 114.544i −0.110589 + 0.191545i
\(599\) −146.853 84.7858i −0.245164 0.141546i 0.372384 0.928079i \(-0.378541\pi\)
−0.617548 + 0.786533i \(0.711874\pi\)
\(600\) 0 0
\(601\) −312.975 + 542.089i −0.520757 + 0.901978i 0.478951 + 0.877841i \(0.341017\pi\)
−0.999709 + 0.0241366i \(0.992316\pi\)
\(602\) 133.199 71.7510i 0.221261 0.119188i
\(603\) 0 0
\(604\) −480.362 + 832.011i −0.795301 + 1.37750i
\(605\) 1061.72i 1.75490i
\(606\) 0 0
\(607\) −37.6117 −0.0619633 −0.0309817 0.999520i \(-0.509863\pi\)
−0.0309817 + 0.999520i \(0.509863\pi\)
\(608\) −225.081 + 129.951i −0.370200 + 0.213735i
\(609\) 0 0
\(610\) 657.855 1139.44i 1.07845 1.86793i
\(611\) 58.0256 + 33.5011i 0.0949682 + 0.0548299i
\(612\) 0 0
\(613\) −149.019 258.108i −0.243098 0.421057i 0.718497 0.695530i \(-0.244830\pi\)
−0.961595 + 0.274472i \(0.911497\pi\)
\(614\) −1081.21 + 624.238i −1.76093 + 1.01667i
\(615\) 0 0
\(616\) −452.668 840.336i −0.734851 1.36418i
\(617\) −818.560 + 472.596i −1.32668 + 0.765957i −0.984784 0.173782i \(-0.944401\pi\)
−0.341893 + 0.939739i \(0.611068\pi\)
\(618\) 0 0
\(619\) −1193.60 −1.92827 −0.964133 0.265418i \(-0.914490\pi\)
−0.964133 + 0.265418i \(0.914490\pi\)
\(620\) 907.229 523.789i 1.46327 0.844820i
\(621\) 0 0
\(622\) 325.892 0.523943
\(623\) 11.1890 379.282i 0.0179599 0.608800i
\(624\) 0 0
\(625\) −733.826 −1.17412
\(626\) −1018.38 587.964i −1.62681 0.939239i
\(627\) 0 0
\(628\) −875.795 1516.92i −1.39458 2.41548i
\(629\) 516.260i 0.820764i
\(630\) 0 0
\(631\) −823.055 −1.30437 −0.652183 0.758062i \(-0.726147\pi\)
−0.652183 + 0.758062i \(0.726147\pi\)
\(632\) −927.158 + 535.295i −1.46702 + 0.846985i
\(633\) 0 0
\(634\) −53.4322 + 92.5472i −0.0842779 + 0.145974i
\(635\) 77.8719i 0.122633i
\(636\) 0 0
\(637\) −199.352 11.7722i −0.312955 0.0184807i
\(638\) 2627.35i 4.11810i
\(639\) 0 0
\(640\) −560.476 970.773i −0.875744 1.51683i
\(641\) 712.531i 1.11159i 0.831319 + 0.555796i \(0.187587\pi\)
−0.831319 + 0.555796i \(0.812413\pi\)
\(642\) 0 0
\(643\) 534.902 + 926.478i 0.831885 + 1.44087i 0.896542 + 0.442960i \(0.146072\pi\)
−0.0646564 + 0.997908i \(0.520595\pi\)
\(644\) −13.2818 + 450.223i −0.0206239 + 0.699104i
\(645\) 0 0
\(646\) −209.213 362.367i −0.323859 0.560940i
\(647\) 973.422 562.006i 1.50452 0.868633i 0.504531 0.863394i \(-0.331666\pi\)
0.999986 0.00523936i \(-0.00166775\pi\)
\(648\) 0 0
\(649\) −840.705 + 1456.14i −1.29539 + 2.24367i
\(650\) −63.8674 36.8739i −0.0982576 0.0567290i
\(651\) 0 0
\(652\) 711.525 + 1232.40i 1.09130 + 1.89018i
\(653\) 48.4318i 0.0741682i 0.999312 + 0.0370841i \(0.0118069\pi\)
−0.999312 + 0.0370841i \(0.988193\pi\)
\(654\) 0 0
\(655\) 123.218 0.188119
\(656\) −19.9147 11.4977i −0.0303577 0.0175270i
\(657\) 0 0
\(658\) 370.812 + 10.9391i 0.563544 + 0.0166248i
\(659\) 818.128 + 472.346i 1.24147 + 0.716762i 0.969393 0.245514i \(-0.0789566\pi\)
0.272076 + 0.962276i \(0.412290\pi\)
\(660\) 0 0
\(661\) −140.597 + 243.521i −0.212703 + 0.368413i −0.952560 0.304352i \(-0.901560\pi\)
0.739856 + 0.672765i \(0.234893\pi\)
\(662\) 252.669 + 145.879i 0.381676 + 0.220361i
\(663\) 0 0
\(664\) −60.9415 + 105.554i −0.0917794 + 0.158967i
\(665\) −8.95604 + 303.590i −0.0134677 + 0.456526i
\(666\) 0 0
\(667\) −231.942 + 401.736i −0.347740 + 0.602303i
\(668\) 463.382i 0.693685i
\(669\) 0 0
\(670\) −217.435 −0.324529
\(671\) 1130.04 652.429i 1.68411 0.972323i
\(672\) 0 0
\(673\) 246.892 427.630i 0.366854 0.635409i −0.622218 0.782844i \(-0.713768\pi\)
0.989072 + 0.147435i \(0.0471017\pi\)
\(674\) 1210.69 + 698.994i 1.79628 + 1.03708i
\(675\) 0 0
\(676\) −486.991 843.494i −0.720401 1.24777i
\(677\) 611.085 352.810i 0.902636 0.521137i 0.0245816 0.999698i \(-0.492175\pi\)
0.878055 + 0.478561i \(0.158841\pi\)
\(678\) 0 0
\(679\) 1205.14 + 35.5521i 1.77487 + 0.0523596i
\(680\) 611.405 352.995i 0.899126 0.519110i
\(681\) 0 0
\(682\) 1689.15 2.47676
\(683\) −1010.24 + 583.260i −1.47912 + 0.853968i −0.999721 0.0236320i \(-0.992477\pi\)
−0.479394 + 0.877600i \(0.659144\pi\)
\(684\) 0 0
\(685\) −205.195 −0.299555
\(686\) −1002.65 + 466.070i −1.46159 + 0.679402i
\(687\) 0 0
\(688\) 4.79989 0.00697659
\(689\) −132.819 76.6832i −0.192771 0.111296i
\(690\) 0 0
\(691\) −182.834 316.677i −0.264593 0.458289i 0.702864 0.711324i \(-0.251904\pi\)
−0.967457 + 0.253036i \(0.918571\pi\)
\(692\) 1349.69i 1.95041i
\(693\) 0 0
\(694\) 37.6993 0.0543217
\(695\) 675.968 390.270i 0.972616 0.561540i
\(696\) 0 0
\(697\) 265.846 460.459i 0.381415 0.660630i
\(698\) 591.250i 0.847063i
\(699\) 0 0
\(700\) −251.035 7.40564i −0.358622 0.0105795i
\(701\) 254.519i 0.363080i 0.983384 + 0.181540i \(0.0581083\pi\)
−0.983384 + 0.181540i \(0.941892\pi\)
\(702\) 0 0
\(703\) 122.293 + 211.818i 0.173959 + 0.301305i
\(704\) 1839.16i 2.61245i
\(705\) 0 0
\(706\) 109.735 + 190.067i 0.155433 + 0.269217i
\(707\) −106.724 + 57.4896i −0.150953 + 0.0813148i
\(708\) 0 0
\(709\) 520.494 + 901.522i 0.734124 + 1.27154i 0.955107 + 0.296263i \(0.0957403\pi\)
−0.220982 + 0.975278i \(0.570926\pi\)
\(710\) 309.141 178.483i 0.435410 0.251384i
\(711\) 0 0
\(712\) −208.933 + 361.882i −0.293445 + 0.508261i
\(713\) −258.280 149.118i −0.362244 0.209142i
\(714\) 0 0
\(715\) −199.436 345.433i −0.278931 0.483123i
\(716\) 513.632i 0.717363i
\(717\) 0 0
\(718\) −1437.42 −2.00198
\(719\) 653.543 + 377.323i 0.908961 + 0.524789i 0.880097 0.474795i \(-0.157478\pi\)
0.0288642 + 0.999583i \(0.490811\pi\)
\(720\) 0 0
\(721\) −91.6233 170.090i −0.127078 0.235909i
\(722\) 836.123 + 482.736i 1.15807 + 0.668609i
\(723\) 0 0
\(724\) 392.891 680.507i 0.542667 0.939927i
\(725\) −224.000 129.326i −0.308965 0.178381i
\(726\) 0 0
\(727\) 698.773 1210.31i 0.961174 1.66480i 0.241612 0.970373i \(-0.422324\pi\)
0.719561 0.694429i \(-0.244343\pi\)
\(728\) 187.130 + 115.528i 0.257046 + 0.158692i
\(729\) 0 0
\(730\) −204.991 + 355.054i −0.280809 + 0.486376i
\(731\) 110.981i 0.151821i
\(732\) 0 0
\(733\) 1253.49 1.71008 0.855039 0.518564i \(-0.173533\pi\)
0.855039 + 0.518564i \(0.173533\pi\)
\(734\) 353.664 204.188i 0.481832 0.278186i
\(735\) 0 0
\(736\) −166.833 + 288.963i −0.226675 + 0.392613i
\(737\) −186.751 107.821i −0.253393 0.146297i
\(738\) 0 0
\(739\) −534.999 926.646i −0.723950 1.25392i −0.959405 0.282033i \(-0.908991\pi\)
0.235454 0.971885i \(-0.424342\pi\)
\(740\) −955.191 + 551.480i −1.29080 + 0.745243i
\(741\) 0 0
\(742\) −848.780 25.0394i −1.14391 0.0337458i
\(743\) 620.266 358.111i 0.834813 0.481980i −0.0206847 0.999786i \(-0.506585\pi\)
0.855498 + 0.517806i \(0.173251\pi\)
\(744\) 0 0
\(745\) 640.261 0.859411
\(746\) −1709.43 + 986.941i −2.29146 + 1.32298i
\(747\) 0 0
\(748\) 1871.32 2.50177
\(749\) 25.2859 857.136i 0.0337595 1.14437i
\(750\) 0 0
\(751\) −120.642 −0.160642 −0.0803208 0.996769i \(-0.525594\pi\)
−0.0803208 + 0.996769i \(0.525594\pi\)
\(752\) 10.1925 + 5.88464i 0.0135538 + 0.00782531i
\(753\) 0 0
\(754\) 302.672 + 524.244i 0.401422 + 0.695284i
\(755\) 831.689i 1.10157i
\(756\) 0 0
\(757\) −369.403 −0.487983 −0.243992 0.969777i \(-0.578457\pi\)
−0.243992 + 0.969777i \(0.578457\pi\)
\(758\) 1146.96 662.196i 1.51314 0.873610i
\(759\) 0 0
\(760\) 167.237 289.662i 0.220048 0.381135i
\(761\) 1145.54i 1.50531i 0.658415 + 0.752655i \(0.271227\pi\)
−0.658415 + 0.752655i \(0.728773\pi\)
\(762\) 0 0
\(763\) 125.559 203.379i 0.164560 0.266552i
\(764\) 2272.07i 2.97391i
\(765\) 0 0
\(766\) 354.782 + 614.500i 0.463161 + 0.802219i
\(767\) 387.399i 0.505084i
\(768\) 0 0
\(769\) 319.295 + 553.035i 0.415208 + 0.719162i 0.995450 0.0952822i \(-0.0303754\pi\)
−0.580242 + 0.814444i \(0.697042\pi\)
\(770\) −1879.18 1160.14i −2.44049 1.50667i
\(771\) 0 0
\(772\) −126.738 219.517i −0.164169 0.284349i
\(773\) 169.438 97.8250i 0.219195 0.126552i −0.386382 0.922339i \(-0.626275\pi\)
0.605578 + 0.795786i \(0.292942\pi\)
\(774\) 0 0
\(775\) 83.1452 144.012i 0.107284 0.185822i
\(776\) −1149.85 663.867i −1.48177 0.855499i
\(777\) 0 0
\(778\) −277.643 480.892i −0.356868 0.618114i
\(779\) 251.897i 0.323360i
\(780\) 0 0
\(781\) 354.021 0.453292
\(782\) −465.212 268.590i −0.594901 0.343466i
\(783\) 0 0
\(784\) −35.0172 2.06785i −0.0446648 0.00263756i
\(785\) −1313.18 758.167i −1.67285 0.965818i
\(786\) 0 0
\(787\) 8.68274 15.0389i 0.0110327 0.0191092i −0.860456 0.509524i \(-0.829821\pi\)
0.871489 + 0.490415i \(0.163155\pi\)
\(788\) −723.073 417.466i −0.917605 0.529780i
\(789\) 0 0
\(790\) −1238.52 + 2145.18i −1.56775 + 2.71542i
\(791\) −463.734 286.294i −0.586263 0.361939i
\(792\) 0 0
\(793\) −150.320 + 260.363i −0.189559 + 0.328326i
\(794\) 1196.08i 1.50640i
\(795\) 0 0
\(796\) 1387.19 1.74270
\(797\) 871.920 503.403i 1.09400 0.631622i 0.159363 0.987220i \(-0.449056\pi\)
0.934639 + 0.355598i \(0.115723\pi\)
\(798\) 0 0
\(799\) −136.062 + 235.667i −0.170291 + 0.294952i
\(800\) −161.120 93.0225i −0.201400 0.116278i
\(801\) 0 0
\(802\) −482.595 835.879i −0.601739 1.04224i
\(803\) −352.126 + 203.300i −0.438513 + 0.253176i
\(804\) 0 0
\(805\) 184.919 + 343.285i 0.229713 + 0.426442i
\(806\) −337.042 + 194.591i −0.418166 + 0.241428i
\(807\) 0 0
\(808\) 133.497 0.165219
\(809\) 364.210 210.277i 0.450198 0.259922i −0.257716 0.966221i \(-0.582970\pi\)
0.707914 + 0.706299i \(0.249636\pi\)
\(810\) 0 0
\(811\) 1318.39 1.62564 0.812819 0.582517i \(-0.197932\pi\)
0.812819 + 0.582517i \(0.197932\pi\)
\(812\) 1754.12 + 1082.93i 2.16024 + 1.33366i
\(813\) 0 0
\(814\) −1778.45 −2.18483
\(815\) 1066.87 + 615.960i 1.30905 + 0.755780i
\(816\) 0 0
\(817\) 26.2895 + 45.5347i 0.0321781 + 0.0557341i
\(818\) 1206.91i 1.47544i
\(819\) 0 0
\(820\) 1135.93 1.38528
\(821\) −668.380 + 385.889i −0.814104 + 0.470023i −0.848379 0.529389i \(-0.822421\pi\)
0.0342747 + 0.999412i \(0.489088\pi\)
\(822\) 0 0
\(823\) −453.227 + 785.013i −0.550702 + 0.953843i 0.447522 + 0.894273i \(0.352306\pi\)
−0.998224 + 0.0595705i \(0.981027\pi\)
\(824\) 212.759i 0.258202i
\(825\) 0 0
\(826\) −1017.22 1888.38i −1.23150 2.28617i
\(827\) 509.463i 0.616038i 0.951380 + 0.308019i \(0.0996660\pi\)
−0.951380 + 0.308019i \(0.900334\pi\)
\(828\) 0 0
\(829\) 332.585 + 576.054i 0.401188 + 0.694878i 0.993870 0.110559i \(-0.0352641\pi\)
−0.592682 + 0.805437i \(0.701931\pi\)
\(830\) 282.002i 0.339762i
\(831\) 0 0
\(832\) 211.873 + 366.974i 0.254655 + 0.441075i
\(833\) 47.8119 809.654i 0.0573973 0.971974i
\(834\) 0 0
\(835\) 200.572 + 347.402i 0.240207 + 0.416050i
\(836\) 767.790 443.284i 0.918409 0.530244i
\(837\) 0 0
\(838\) −651.985 + 1129.27i −0.778025 + 1.34758i
\(839\) −1237.78 714.635i −1.47531 0.851770i −0.475696 0.879610i \(-0.657804\pi\)
−0.999612 + 0.0278396i \(0.991137\pi\)
\(840\) 0 0
\(841\) 641.052 + 1110.33i 0.762250 + 1.32026i
\(842\) 1489.30i 1.76876i
\(843\) 0 0
\(844\) 698.082 0.827111
\(845\) −730.204 421.583i −0.864147 0.498915i
\(846\) 0 0
\(847\) −637.020 1182.57i −0.752090 1.39619i
\(848\) −23.3304 13.4698i −0.0275122 0.0158842i
\(849\) 0 0
\(850\) 149.761 259.393i 0.176189 0.305168i
\(851\) 271.935 + 157.002i 0.319547 + 0.184491i
\(852\) 0 0
\(853\) 485.171 840.341i 0.568782 0.985159i −0.427905 0.903824i \(-0.640748\pi\)
0.996687 0.0813353i \(-0.0259185\pi\)
\(854\) −49.0841 + 1663.84i −0.0574756 + 1.94830i
\(855\) 0 0
\(856\) −472.165 + 817.813i −0.551594 + 0.955389i
\(857\) 1510.42i 1.76245i 0.472700 + 0.881223i \(0.343279\pi\)
−0.472700 + 0.881223i \(0.656721\pi\)
\(858\) 0 0
\(859\) −1228.38 −1.43001 −0.715007 0.699118i \(-0.753576\pi\)
−0.715007 + 0.699118i \(0.753576\pi\)
\(860\) −205.339 + 118.552i −0.238766 + 0.137852i
\(861\) 0 0
\(862\) 367.683 636.845i 0.426546 0.738800i
\(863\) 1292.69 + 746.335i 1.49790 + 0.864815i 0.999997 0.00241587i \(-0.000768995\pi\)
0.497906 + 0.867231i \(0.334102\pi\)
\(864\) 0 0
\(865\) −584.205 1011.87i −0.675382 1.16980i
\(866\) 2170.89 1253.36i 2.50680 1.44730i
\(867\) 0 0
\(868\) −696.228 + 1127.74i −0.802106 + 1.29924i
\(869\) −2127.48 + 1228.30i −2.44820 + 1.41347i
\(870\) 0 0
\(871\) 49.6841 0.0570425
\(872\) −227.951 + 131.608i −0.261412 + 0.150926i
\(873\) 0 0
\(874\) −254.497 −0.291187
\(875\) 661.045 356.088i 0.755480 0.406958i
\(876\) 0 0
\(877\) −346.948 −0.395608 −0.197804 0.980242i \(-0.563381\pi\)
−0.197804 + 0.980242i \(0.563381\pi\)
\(878\) −192.071 110.892i −0.218760 0.126301i
\(879\) 0 0
\(880\) −35.0319 60.6770i −0.0398090 0.0689512i
\(881\) 738.403i 0.838142i −0.907953 0.419071i \(-0.862356\pi\)
0.907953 0.419071i \(-0.137644\pi\)
\(882\) 0 0
\(883\) 872.215 0.987786 0.493893 0.869523i \(-0.335573\pi\)
0.493893 + 0.869523i \(0.335573\pi\)
\(884\) −373.392 + 215.578i −0.422389 + 0.243866i
\(885\) 0 0
\(886\) 335.783 581.593i 0.378987 0.656426i
\(887\) 633.281i 0.713958i 0.934112 + 0.356979i \(0.116193\pi\)
−0.934112 + 0.356979i \(0.883807\pi\)
\(888\) 0 0
\(889\) 46.7225 + 86.7359i 0.0525562 + 0.0975657i
\(890\) 966.821i 1.08632i
\(891\) 0 0
\(892\) 596.753 + 1033.61i 0.669005 + 1.15875i
\(893\) 128.923i 0.144371i
\(894\) 0 0
\(895\) −222.323 385.075i −0.248406 0.430251i
\(896\) 1206.73 + 744.993i 1.34680 + 0.831466i
\(897\) 0 0
\(898\) 417.524 + 723.172i 0.464949 + 0.805314i
\(899\) −1182.09 + 682.483i −1.31490 + 0.759158i
\(900\) 0 0
\(901\) 311.443 539.436i 0.345664 0.598708i
\(902\) 1586.22 + 915.805i 1.75856 + 1.01531i
\(903\) 0 0
\(904\) 300.084 + 519.761i 0.331951 + 0.574957i
\(905\) 680.244i 0.751650i
\(906\) 0 0
\(907\) 1121.71 1.23672 0.618361 0.785894i \(-0.287797\pi\)
0.618361 + 0.785894i \(0.287797\pi\)
\(908\) −1121.12 647.278i −1.23471 0.712861i
\(909\) 0 0
\(910\) 508.607 + 15.0041i 0.558909 + 0.0164881i
\(911\) 770.852 + 445.052i 0.846160 + 0.488531i 0.859353 0.511382i \(-0.170866\pi\)
−0.0131931 + 0.999913i \(0.504200\pi\)
\(912\) 0 0
\(913\) −139.838 + 242.207i −0.153163 + 0.265287i
\(914\) −445.099 256.978i −0.486979 0.281158i
\(915\) 0 0
\(916\) −253.332 + 438.784i −0.276563 + 0.479021i
\(917\) −137.244 + 73.9297i −0.149666 + 0.0806213i
\(918\) 0 0
\(919\) 567.953 983.724i 0.618012 1.07043i −0.371836 0.928299i \(-0.621271\pi\)
0.989848 0.142130i \(-0.0453952\pi\)
\(920\) 429.402i 0.466741i
\(921\) 0 0
\(922\) 658.502 0.714211
\(923\) −70.6391 + 40.7835i −0.0765321 + 0.0441858i
\(924\) 0 0
\(925\) −87.5408 + 151.625i −0.0946387 + 0.163919i
\(926\) −2127.85 1228.52i −2.29790 1.32669i
\(927\) 0 0
\(928\) 763.559 + 1322.52i 0.822800 + 1.42513i
\(929\) −622.843 + 359.598i −0.670444 + 0.387081i −0.796245 0.604974i \(-0.793183\pi\)
0.125801 + 0.992056i \(0.459850\pi\)
\(930\) 0 0
\(931\) −172.176 343.521i −0.184937 0.368980i
\(932\) 1805.12 1042.18i 1.93682 1.11822i
\(933\) 0 0
\(934\) −1719.85 −1.84138
\(935\) 1402.95 809.994i 1.50048 0.866303i
\(936\) 0 0
\(937\) −1522.34 −1.62470 −0.812348 0.583172i \(-0.801811\pi\)
−0.812348 + 0.583172i \(0.801811\pi\)
\(938\) 242.185 130.459i 0.258193 0.139082i
\(939\) 0 0
\(940\) −581.377 −0.618487
\(941\) 886.384 + 511.754i 0.941960 + 0.543841i 0.890574 0.454838i \(-0.150303\pi\)
0.0513858 + 0.998679i \(0.483636\pi\)
\(942\) 0 0
\(943\) −161.695 280.063i −0.171468 0.296992i
\(944\) 68.0487i 0.0720855i
\(945\) 0 0
\(946\) −382.316 −0.404139
\(947\) −1361.76 + 786.215i −1.43798 + 0.830217i −0.997709 0.0676499i \(-0.978450\pi\)
−0.440268 + 0.897866i \(0.645117\pi\)
\(948\) 0 0
\(949\) 46.8406 81.1303i 0.0493578 0.0854903i
\(950\) 141.902i 0.149371i
\(951\) 0 0
\(952\) −469.207 + 760.014i −0.492864 + 0.798334i
\(953\) 1342.92i 1.40915i −0.709629 0.704576i \(-0.751137\pi\)
0.709629 0.704576i \(-0.248863\pi\)
\(954\) 0 0
\(955\) 983.453 + 1703.39i 1.02979 + 1.78366i
\(956\) 1556.60i 1.62824i
\(957\) 0 0
\(958\) −974.348 1687.62i −1.01706 1.76161i
\(959\) 228.552 123.115i 0.238323 0.128379i
\(960\) 0 0
\(961\) 41.7250 + 72.2699i 0.0434183 + 0.0752028i
\(962\) 354.860 204.879i 0.368877 0.212971i
\(963\) 0 0
\(964\) 90.5672 156.867i 0.0939493 0.162725i
\(965\) −190.034 109.716i −0.196927 0.113696i
\(966\) 0 0
\(967\) −867.804 1503.08i −0.897418 1.55437i −0.830783 0.556597i \(-0.812107\pi\)
−0.0666355 0.997777i \(-0.521226\pi\)
\(968\) 1479.23i 1.52813i
\(969\) 0 0
\(970\) −3072.00 −3.16701
\(971\) −43.8474 25.3153i −0.0451569 0.0260714i 0.477252 0.878767i \(-0.341633\pi\)
−0.522409 + 0.852695i \(0.674966\pi\)
\(972\) 0 0
\(973\) −518.753 + 840.269i −0.533148 + 0.863586i
\(974\) −436.071 251.766i −0.447712 0.258486i
\(975\) 0 0
\(976\) −26.4045 + 45.7340i −0.0270538 + 0.0468586i
\(977\) −506.717 292.553i −0.518646 0.299440i 0.217734 0.976008i \(-0.430133\pi\)
−0.736381 + 0.676568i \(0.763467\pi\)
\(978\) 0 0
\(979\) −479.423 + 830.386i −0.489707 + 0.848198i
\(980\) 1549.11 776.427i 1.58072 0.792272i
\(981\) 0 0
\(982\) 645.630 1118.26i 0.657464 1.13876i
\(983\) 968.896i 0.985653i −0.870128 0.492826i \(-0.835964\pi\)
0.870128 0.492826i \(-0.164036\pi\)
\(984\) 0 0
\(985\) −722.793 −0.733800
\(986\) −2129.18 + 1229.28i −2.15941 + 1.24674i
\(987\) 0 0
\(988\) −102.133 + 176.900i −0.103374 + 0.179048i
\(989\) 58.4582 + 33.7508i 0.0591084 + 0.0341262i
\(990\) 0 0
\(991\) −104.448 180.910i −0.105397 0.182553i 0.808503 0.588492i \(-0.200278\pi\)
−0.913900 + 0.405939i \(0.866945\pi\)
\(992\) −850.263 + 490.900i −0.857120 + 0.494859i
\(993\) 0 0
\(994\) −237.242 + 384.281i −0.238674 + 0.386601i
\(995\) 1039.99 600.439i 1.04522 0.603457i
\(996\) 0 0
\(997\) 152.170 0.152628 0.0763140 0.997084i \(-0.475685\pi\)
0.0763140 + 0.997084i \(0.475685\pi\)
\(998\) −341.392 + 197.103i −0.342077 + 0.197498i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 189.3.n.b.170.10 22
3.2 odd 2 63.3.n.b.2.2 yes 22
7.4 even 3 189.3.j.b.116.10 22
9.4 even 3 63.3.j.b.23.10 yes 22
9.5 odd 6 189.3.j.b.44.2 22
21.2 odd 6 441.3.r.g.344.10 22
21.5 even 6 441.3.r.f.344.10 22
21.11 odd 6 63.3.j.b.11.2 22
21.17 even 6 441.3.j.f.263.2 22
21.20 even 2 441.3.n.f.128.2 22
63.4 even 3 63.3.n.b.32.2 yes 22
63.13 odd 6 441.3.j.f.275.10 22
63.31 odd 6 441.3.n.f.410.2 22
63.32 odd 6 inner 189.3.n.b.179.10 22
63.40 odd 6 441.3.r.f.50.10 22
63.58 even 3 441.3.r.g.50.10 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.j.b.11.2 22 21.11 odd 6
63.3.j.b.23.10 yes 22 9.4 even 3
63.3.n.b.2.2 yes 22 3.2 odd 2
63.3.n.b.32.2 yes 22 63.4 even 3
189.3.j.b.44.2 22 9.5 odd 6
189.3.j.b.116.10 22 7.4 even 3
189.3.n.b.170.10 22 1.1 even 1 trivial
189.3.n.b.179.10 22 63.32 odd 6 inner
441.3.j.f.263.2 22 21.17 even 6
441.3.j.f.275.10 22 63.13 odd 6
441.3.n.f.128.2 22 21.20 even 2
441.3.n.f.410.2 22 63.31 odd 6
441.3.r.f.50.10 22 63.40 odd 6
441.3.r.f.344.10 22 21.5 even 6
441.3.r.g.50.10 22 63.58 even 3
441.3.r.g.344.10 22 21.2 odd 6