Properties

Label 441.3.r.f.50.10
Level $441$
Weight $3$
Character 441.50
Analytic conductor $12.016$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,3,Mod(50,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.50");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 441.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0163796583\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 50.10
Character \(\chi\) \(=\) 441.50
Dual form 441.3.r.f.344.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.79169 - 1.61178i) q^{2} +(-2.80334 + 1.06831i) q^{3} +(3.19568 - 5.53509i) q^{4} +(-4.79167 - 2.76647i) q^{5} +(-6.10417 + 7.50076i) q^{6} -7.70873i q^{8} +(6.71743 - 5.98966i) q^{9} +O(q^{10})\) \(q+(2.79169 - 1.61178i) q^{2} +(-2.80334 + 1.06831i) q^{3} +(3.19568 - 5.53509i) q^{4} +(-4.79167 - 2.76647i) q^{5} +(-6.10417 + 7.50076i) q^{6} -7.70873i q^{8} +(6.71743 - 5.98966i) q^{9} -17.8358 q^{10} +(-15.3189 + 8.84435i) q^{11} +(-3.04541 + 18.9307i) q^{12} +(-2.03775 + 3.52949i) q^{13} +(16.3881 + 2.63638i) q^{15} +(0.357941 + 0.619972i) q^{16} +16.5523i q^{17} +(9.09895 - 27.5483i) q^{18} -7.84192 q^{19} +(-30.6253 + 17.6815i) q^{20} +(-28.5103 + 49.3813i) q^{22} +(-8.71877 - 5.03378i) q^{23} +(8.23530 + 21.6102i) q^{24} +(2.80674 + 4.86141i) q^{25} +13.1376i q^{26} +(-12.4324 + 23.9674i) q^{27} +(-39.9040 + 23.0386i) q^{29} +(49.9998 - 19.0541i) q^{30} +(14.8117 - 25.6547i) q^{31} +(28.7023 + 16.5713i) q^{32} +(33.4955 - 41.1590i) q^{33} +(26.6788 + 46.2090i) q^{34} +(-11.6865 - 56.3227i) q^{36} -31.1896 q^{37} +(-21.8922 + 12.6395i) q^{38} +(1.94193 - 12.0713i) q^{39} +(-21.3260 + 36.9377i) q^{40} +(-27.8184 - 16.0609i) q^{41} +(3.35243 + 5.80658i) q^{43} +113.055i q^{44} +(-48.7580 + 10.1169i) q^{45} -32.4535 q^{46} +(-14.2377 + 8.22012i) q^{47} +(-1.66575 - 1.35560i) q^{48} +(15.6711 + 9.04769i) q^{50} +(-17.6830 - 46.4019i) q^{51} +(13.0240 + 22.5583i) q^{52} -37.6313i q^{53} +(3.92265 + 86.9478i) q^{54} +97.8706 q^{55} +(21.9836 - 8.37759i) q^{57} +(-74.2663 + 128.633i) q^{58} +(82.3206 + 47.5278i) q^{59} +(66.9639 - 82.2847i) q^{60} +(-36.8839 - 63.8848i) q^{61} -95.4932i q^{62} +103.974 q^{64} +(19.5285 - 11.2748i) q^{65} +(27.1696 - 168.890i) q^{66} +(6.09545 - 10.5576i) q^{67} +(91.6187 + 52.8961i) q^{68} +(29.8193 + 4.79707i) q^{69} +20.0140i q^{71} +(-46.1727 - 51.7829i) q^{72} -22.9864 q^{73} +(-87.0715 + 50.2708i) q^{74} +(-13.0617 - 10.6297i) q^{75} +(-25.0603 + 43.4057i) q^{76} +(-14.0351 - 36.8293i) q^{78} +(-69.4400 - 120.274i) q^{79} -3.96094i q^{80} +(9.24784 - 80.4704i) q^{81} -103.547 q^{82} +(-13.6928 + 7.90552i) q^{83} +(45.7916 - 79.3134i) q^{85} +(18.7179 + 10.8068i) q^{86} +(87.2521 - 107.215i) q^{87} +(68.1787 + 118.089i) q^{88} -54.2068i q^{89} +(-119.811 + 106.830i) q^{90} +(-55.7249 + 32.1728i) q^{92} +(-14.1152 + 87.7423i) q^{93} +(-26.4981 + 45.8960i) q^{94} +(37.5759 + 21.6944i) q^{95} +(-98.1657 - 15.7921i) q^{96} +(-86.1189 - 149.162i) q^{97} +(-49.9287 + 151.166i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 6 q^{2} - 11 q^{3} + 12 q^{4} + 12 q^{5} + 8 q^{6} + 17 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q + 6 q^{2} - 11 q^{3} + 12 q^{4} + 12 q^{5} + 8 q^{6} + 17 q^{9} + 50 q^{10} - 24 q^{11} + 20 q^{12} + 18 q^{13} + 53 q^{15} + 12 q^{16} + 16 q^{18} + 6 q^{19} + 39 q^{20} - 59 q^{22} - 81 q^{23} + 141 q^{24} + 57 q^{25} + 97 q^{27} - 63 q^{29} + 58 q^{30} + 29 q^{31} - 246 q^{32} + 73 q^{33} + 99 q^{34} + 76 q^{36} + 40 q^{37} - 48 q^{38} - 124 q^{39} + 105 q^{40} + 51 q^{41} + 65 q^{43} - 143 q^{45} - 150 q^{46} + 261 q^{47} + 113 q^{48} + 63 q^{50} - 63 q^{51} + 46 q^{52} - 52 q^{54} + 100 q^{55} + 224 q^{57} + 40 q^{58} - 102 q^{59} + 379 q^{60} - 78 q^{61} + 106 q^{64} + 225 q^{65} - 340 q^{66} - 132 q^{67} + 27 q^{68} + 297 q^{69} + 288 q^{72} + 2 q^{73} - 342 q^{74} - 541 q^{75} - 233 q^{76} - 440 q^{78} + 140 q^{79} + 65 q^{81} - 314 q^{82} - 255 q^{83} + 102 q^{85} - 504 q^{86} + 568 q^{87} + 408 q^{88} - 418 q^{90} - 1239 q^{92} - 174 q^{93} - 261 q^{94} - 642 q^{95} + 142 q^{96} - 178 q^{97} - 103 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.79169 1.61178i 1.39584 0.805891i 0.401890 0.915688i \(-0.368353\pi\)
0.993954 + 0.109797i \(0.0350200\pi\)
\(3\) −2.80334 + 1.06831i −0.934447 + 0.356103i
\(4\) 3.19568 5.53509i 0.798921 1.38377i
\(5\) −4.79167 2.76647i −0.958334 0.553294i −0.0626741 0.998034i \(-0.519963\pi\)
−0.895660 + 0.444740i \(0.853296\pi\)
\(6\) −6.10417 + 7.50076i −1.01736 + 1.25013i
\(7\) 0 0
\(8\) 7.70873i 0.963591i
\(9\) 6.71743 5.98966i 0.746382 0.665518i
\(10\) −17.8358 −1.78358
\(11\) −15.3189 + 8.84435i −1.39262 + 0.804032i −0.993605 0.112911i \(-0.963982\pi\)
−0.399018 + 0.916943i \(0.630649\pi\)
\(12\) −3.04541 + 18.9307i −0.253784 + 1.57756i
\(13\) −2.03775 + 3.52949i −0.156750 + 0.271499i −0.933695 0.358070i \(-0.883435\pi\)
0.776945 + 0.629569i \(0.216768\pi\)
\(14\) 0 0
\(15\) 16.3881 + 2.63638i 1.09254 + 0.175759i
\(16\) 0.357941 + 0.619972i 0.0223713 + 0.0387483i
\(17\) 16.5523i 0.973667i 0.873495 + 0.486834i \(0.161848\pi\)
−0.873495 + 0.486834i \(0.838152\pi\)
\(18\) 9.09895 27.5483i 0.505497 1.53046i
\(19\) −7.84192 −0.412732 −0.206366 0.978475i \(-0.566164\pi\)
−0.206366 + 0.978475i \(0.566164\pi\)
\(20\) −30.6253 + 17.6815i −1.53127 + 0.884077i
\(21\) 0 0
\(22\) −28.5103 + 49.3813i −1.29592 + 2.24461i
\(23\) −8.71877 5.03378i −0.379077 0.218860i 0.298340 0.954460i \(-0.403567\pi\)
−0.677417 + 0.735600i \(0.736901\pi\)
\(24\) 8.23530 + 21.6102i 0.343138 + 0.900425i
\(25\) 2.80674 + 4.86141i 0.112269 + 0.194456i
\(26\) 13.1376i 0.505294i
\(27\) −12.4324 + 23.9674i −0.460461 + 0.887680i
\(28\) 0 0
\(29\) −39.9040 + 23.0386i −1.37600 + 0.794434i −0.991675 0.128764i \(-0.958899\pi\)
−0.384324 + 0.923198i \(0.625566\pi\)
\(30\) 49.9998 19.0541i 1.66666 0.635138i
\(31\) 14.8117 25.6547i 0.477798 0.827570i −0.521878 0.853020i \(-0.674768\pi\)
0.999676 + 0.0254498i \(0.00810179\pi\)
\(32\) 28.7023 + 16.5713i 0.896948 + 0.517853i
\(33\) 33.4955 41.1590i 1.01501 1.24724i
\(34\) 26.6788 + 46.2090i 0.784670 + 1.35909i
\(35\) 0 0
\(36\) −11.6865 56.3227i −0.324626 1.56452i
\(37\) −31.1896 −0.842961 −0.421481 0.906837i \(-0.638489\pi\)
−0.421481 + 0.906837i \(0.638489\pi\)
\(38\) −21.8922 + 12.6395i −0.576110 + 0.332617i
\(39\) 1.94193 12.0713i 0.0497930 0.309520i
\(40\) −21.3260 + 36.9377i −0.533150 + 0.923442i
\(41\) −27.8184 16.0609i −0.678497 0.391730i 0.120792 0.992678i \(-0.461457\pi\)
−0.799288 + 0.600948i \(0.794790\pi\)
\(42\) 0 0
\(43\) 3.35243 + 5.80658i 0.0779635 + 0.135037i 0.902371 0.430960i \(-0.141825\pi\)
−0.824408 + 0.565997i \(0.808492\pi\)
\(44\) 113.055i 2.56943i
\(45\) −48.7580 + 10.1169i −1.08351 + 0.224820i
\(46\) −32.4535 −0.705510
\(47\) −14.2377 + 8.22012i −0.302929 + 0.174896i −0.643758 0.765229i \(-0.722626\pi\)
0.340829 + 0.940125i \(0.389292\pi\)
\(48\) −1.66575 1.35560i −0.0347032 0.0282417i
\(49\) 0 0
\(50\) 15.6711 + 9.04769i 0.313421 + 0.180954i
\(51\) −17.6830 46.4019i −0.346726 0.909840i
\(52\) 13.0240 + 22.5583i 0.250462 + 0.433813i
\(53\) 37.6313i 0.710025i −0.934862 0.355013i \(-0.884477\pi\)
0.934862 0.355013i \(-0.115523\pi\)
\(54\) 3.92265 + 86.9478i 0.0726417 + 1.61014i
\(55\) 97.8706 1.77946
\(56\) 0 0
\(57\) 21.9836 8.37759i 0.385676 0.146975i
\(58\) −74.2663 + 128.633i −1.28045 + 2.21781i
\(59\) 82.3206 + 47.5278i 1.39527 + 0.805557i 0.993892 0.110358i \(-0.0351997\pi\)
0.401373 + 0.915915i \(0.368533\pi\)
\(60\) 66.9639 82.2847i 1.11606 1.37141i
\(61\) −36.8839 63.8848i −0.604655 1.04729i −0.992106 0.125402i \(-0.959978\pi\)
0.387451 0.921890i \(-0.373356\pi\)
\(62\) 95.4932i 1.54021i
\(63\) 0 0
\(64\) 103.974 1.62459
\(65\) 19.5285 11.2748i 0.300438 0.173458i
\(66\) 27.1696 168.890i 0.411661 2.55895i
\(67\) 6.09545 10.5576i 0.0909769 0.157577i −0.816946 0.576715i \(-0.804334\pi\)
0.907922 + 0.419138i \(0.137668\pi\)
\(68\) 91.6187 + 52.8961i 1.34733 + 0.777883i
\(69\) 29.8193 + 4.79707i 0.432164 + 0.0695228i
\(70\) 0 0
\(71\) 20.0140i 0.281887i 0.990018 + 0.140944i \(0.0450136\pi\)
−0.990018 + 0.140944i \(0.954986\pi\)
\(72\) −46.1727 51.7829i −0.641288 0.719207i
\(73\) −22.9864 −0.314883 −0.157441 0.987528i \(-0.550325\pi\)
−0.157441 + 0.987528i \(0.550325\pi\)
\(74\) −87.0715 + 50.2708i −1.17664 + 0.679335i
\(75\) −13.0617 10.6297i −0.174156 0.141730i
\(76\) −25.0603 + 43.4057i −0.329741 + 0.571128i
\(77\) 0 0
\(78\) −14.0351 36.8293i −0.179937 0.472170i
\(79\) −69.4400 120.274i −0.878988 1.52245i −0.852453 0.522804i \(-0.824886\pi\)
−0.0265350 0.999648i \(-0.508447\pi\)
\(80\) 3.96094i 0.0495117i
\(81\) 9.24784 80.4704i 0.114171 0.993461i
\(82\) −103.547 −1.26277
\(83\) −13.6928 + 7.90552i −0.164973 + 0.0952472i −0.580213 0.814465i \(-0.697031\pi\)
0.415240 + 0.909712i \(0.363697\pi\)
\(84\) 0 0
\(85\) 45.7916 79.3134i 0.538725 0.933099i
\(86\) 18.7179 + 10.8068i 0.217650 + 0.125660i
\(87\) 87.2521 107.215i 1.00290 1.23235i
\(88\) 68.1787 + 118.089i 0.774758 + 1.34192i
\(89\) 54.2068i 0.609065i −0.952502 0.304532i \(-0.901500\pi\)
0.952502 0.304532i \(-0.0985002\pi\)
\(90\) −119.811 + 106.830i −1.33123 + 1.18701i
\(91\) 0 0
\(92\) −55.7249 + 32.1728i −0.605705 + 0.349704i
\(93\) −14.1152 + 87.7423i −0.151777 + 0.943466i
\(94\) −26.4981 + 45.8960i −0.281894 + 0.488256i
\(95\) 37.5759 + 21.6944i 0.395536 + 0.228363i
\(96\) −98.1657 15.7921i −1.02256 0.164501i
\(97\) −86.1189 149.162i −0.887823 1.53776i −0.842443 0.538785i \(-0.818883\pi\)
−0.0453802 0.998970i \(-0.514450\pi\)
\(98\) 0 0
\(99\) −49.9287 + 151.166i −0.504331 + 1.52693i
\(100\) 35.8778 0.358778
\(101\) −14.9975 + 8.65880i −0.148490 + 0.0857307i −0.572404 0.819972i \(-0.693989\pi\)
0.423914 + 0.905702i \(0.360656\pi\)
\(102\) −124.155 101.038i −1.21721 0.990572i
\(103\) −13.7999 + 23.9021i −0.133979 + 0.232059i −0.925207 0.379463i \(-0.876109\pi\)
0.791228 + 0.611521i \(0.209442\pi\)
\(104\) 27.2079 + 15.7085i 0.261614 + 0.151043i
\(105\) 0 0
\(106\) −60.6535 105.055i −0.572203 0.991085i
\(107\) 122.501i 1.14487i 0.819950 + 0.572436i \(0.194001\pi\)
−0.819950 + 0.572436i \(0.805999\pi\)
\(108\) 92.9313 + 145.407i 0.860475 + 1.34636i
\(109\) 34.1451 0.313257 0.156629 0.987658i \(-0.449937\pi\)
0.156629 + 0.987658i \(0.449937\pi\)
\(110\) 273.224 157.746i 2.48386 1.43405i
\(111\) 87.4350 33.3201i 0.787702 0.300181i
\(112\) 0 0
\(113\) 67.4250 + 38.9278i 0.596681 + 0.344494i 0.767735 0.640768i \(-0.221384\pi\)
−0.171054 + 0.985262i \(0.554717\pi\)
\(114\) 47.8684 58.8203i 0.419898 0.515968i
\(115\) 27.8516 + 48.2405i 0.242188 + 0.419482i
\(116\) 294.496i 2.53876i
\(117\) 7.45199 + 35.9145i 0.0636922 + 0.306962i
\(118\) 306.418 2.59676
\(119\) 0 0
\(120\) 20.3231 126.332i 0.169360 1.05276i
\(121\) 95.9449 166.182i 0.792933 1.37340i
\(122\) −205.937 118.898i −1.68801 0.974572i
\(123\) 95.1424 + 15.3057i 0.773515 + 0.124436i
\(124\) −94.6673 163.968i −0.763446 1.32233i
\(125\) 107.265i 0.858117i
\(126\) 0 0
\(127\) 14.0742 0.110821 0.0554103 0.998464i \(-0.482353\pi\)
0.0554103 + 0.998464i \(0.482353\pi\)
\(128\) 175.453 101.298i 1.37073 0.791390i
\(129\) −15.6012 12.6964i −0.120940 0.0984217i
\(130\) 36.3449 62.9512i 0.279576 0.484240i
\(131\) 19.2863 + 11.1349i 0.147223 + 0.0849995i 0.571802 0.820391i \(-0.306244\pi\)
−0.424579 + 0.905391i \(0.639578\pi\)
\(132\) −120.778 316.932i −0.914982 2.40100i
\(133\) 0 0
\(134\) 39.2982i 0.293270i
\(135\) 125.877 80.4497i 0.932424 0.595924i
\(136\) 127.598 0.938217
\(137\) −32.1175 + 18.5430i −0.234434 + 0.135351i −0.612616 0.790381i \(-0.709883\pi\)
0.378182 + 0.925731i \(0.376549\pi\)
\(138\) 90.9781 34.6703i 0.659262 0.251234i
\(139\) −70.5358 + 122.172i −0.507451 + 0.878932i 0.492511 + 0.870306i \(0.336079\pi\)
−0.999963 + 0.00862568i \(0.997254\pi\)
\(140\) 0 0
\(141\) 31.1314 38.2540i 0.220790 0.271305i
\(142\) 32.2582 + 55.8728i 0.227170 + 0.393471i
\(143\) 72.0903i 0.504128i
\(144\) 6.11787 + 2.02067i 0.0424852 + 0.0140325i
\(145\) 254.942 1.75822
\(146\) −64.1710 + 37.0491i −0.439527 + 0.253761i
\(147\) 0 0
\(148\) −99.6720 + 172.637i −0.673459 + 1.16647i
\(149\) −100.215 57.8590i −0.672582 0.388315i 0.124472 0.992223i \(-0.460276\pi\)
−0.797054 + 0.603908i \(0.793610\pi\)
\(150\) −53.5970 8.62223i −0.357314 0.0574815i
\(151\) 75.1579 + 130.177i 0.497734 + 0.862101i 0.999997 0.00261420i \(-0.000832125\pi\)
−0.502262 + 0.864715i \(0.667499\pi\)
\(152\) 60.4512i 0.397705i
\(153\) 99.1430 + 111.189i 0.647993 + 0.726727i
\(154\) 0 0
\(155\) −141.946 + 81.9525i −0.915780 + 0.528726i
\(156\) −60.6099 49.3248i −0.388525 0.316185i
\(157\) −137.028 + 237.339i −0.872788 + 1.51171i −0.0136883 + 0.999906i \(0.504357\pi\)
−0.859100 + 0.511808i \(0.828976\pi\)
\(158\) −387.710 223.844i −2.45386 1.41674i
\(159\) 40.2019 + 105.493i 0.252842 + 0.663481i
\(160\) −91.6881 158.808i −0.573051 0.992553i
\(161\) 0 0
\(162\) −103.884 239.554i −0.641257 1.47873i
\(163\) 222.652 1.36596 0.682981 0.730436i \(-0.260683\pi\)
0.682981 + 0.730436i \(0.260683\pi\)
\(164\) −177.797 + 102.651i −1.08413 + 0.625923i
\(165\) −274.364 + 104.556i −1.66281 + 0.633672i
\(166\) −25.4839 + 44.1395i −0.153518 + 0.265900i
\(167\) −62.7878 36.2506i −0.375975 0.217069i 0.300091 0.953911i \(-0.402983\pi\)
−0.676066 + 0.736841i \(0.736316\pi\)
\(168\) 0 0
\(169\) 76.1951 + 131.974i 0.450859 + 0.780910i
\(170\) 295.224i 1.73661i
\(171\) −52.6776 + 46.9704i −0.308056 + 0.274681i
\(172\) 42.8533 0.249147
\(173\) −182.881 + 105.587i −1.05712 + 0.610328i −0.924634 0.380857i \(-0.875629\pi\)
−0.132485 + 0.991185i \(0.542296\pi\)
\(174\) 70.7740 439.942i 0.406747 2.52840i
\(175\) 0 0
\(176\) −10.9665 6.33151i −0.0623096 0.0359745i
\(177\) −281.547 45.2929i −1.59066 0.255892i
\(178\) −87.3695 151.328i −0.490840 0.850160i
\(179\) 80.3634i 0.448957i 0.974479 + 0.224479i \(0.0720679\pi\)
−0.974479 + 0.224479i \(0.927932\pi\)
\(180\) −99.8171 + 302.210i −0.554540 + 1.67894i
\(181\) −122.944 −0.679250 −0.339625 0.940561i \(-0.610300\pi\)
−0.339625 + 0.940561i \(0.610300\pi\)
\(182\) 0 0
\(183\) 171.647 + 139.688i 0.937961 + 0.763320i
\(184\) −38.8041 + 67.2107i −0.210892 + 0.365275i
\(185\) 149.450 + 86.2850i 0.807838 + 0.466406i
\(186\) 102.016 + 267.700i 0.548474 + 1.43925i
\(187\) −146.395 253.563i −0.782859 1.35595i
\(188\) 105.076i 0.558913i
\(189\) 0 0
\(190\) 139.867 0.736141
\(191\) −307.863 + 177.745i −1.61185 + 0.930602i −0.622909 + 0.782294i \(0.714049\pi\)
−0.988941 + 0.148308i \(0.952617\pi\)
\(192\) −291.474 + 111.076i −1.51809 + 0.578522i
\(193\) 19.8296 34.3459i 0.102744 0.177958i −0.810070 0.586333i \(-0.800571\pi\)
0.912814 + 0.408375i \(0.133904\pi\)
\(194\) −480.834 277.610i −2.47853 1.43098i
\(195\) −42.7000 + 52.4694i −0.218974 + 0.269074i
\(196\) 0 0
\(197\) 130.634i 0.663119i −0.943434 0.331559i \(-0.892425\pi\)
0.943434 0.331559i \(-0.107575\pi\)
\(198\) 104.261 + 502.483i 0.526573 + 2.53779i
\(199\) 217.042 1.09066 0.545331 0.838221i \(-0.316404\pi\)
0.545331 + 0.838221i \(0.316404\pi\)
\(200\) 37.4753 21.6364i 0.187376 0.108182i
\(201\) −5.80882 + 36.1085i −0.0288996 + 0.179644i
\(202\) −27.9122 + 48.3454i −0.138179 + 0.239333i
\(203\) 0 0
\(204\) −313.348 50.4087i −1.53602 0.247101i
\(205\) 88.8643 + 153.917i 0.433484 + 0.750817i
\(206\) 88.9695i 0.431891i
\(207\) −88.7184 + 18.4084i −0.428592 + 0.0889295i
\(208\) −2.91758 −0.0140268
\(209\) 120.129 69.3566i 0.574781 0.331850i
\(210\) 0 0
\(211\) 54.6113 94.5895i 0.258821 0.448292i −0.707105 0.707108i \(-0.749999\pi\)
0.965926 + 0.258817i \(0.0833326\pi\)
\(212\) −208.293 120.258i −0.982513 0.567254i
\(213\) −21.3811 56.1060i −0.100381 0.263409i
\(214\) 197.445 + 341.985i 0.922642 + 1.59806i
\(215\) 37.0976i 0.172547i
\(216\) 184.758 + 95.8384i 0.855361 + 0.443696i
\(217\) 0 0
\(218\) 95.3224 55.0344i 0.437259 0.252451i
\(219\) 64.4388 24.5566i 0.294241 0.112131i
\(220\) 312.763 541.722i 1.42165 2.46237i
\(221\) −58.4213 33.7295i −0.264350 0.152622i
\(222\) 190.386 233.945i 0.857597 1.05381i
\(223\) 93.3685 + 161.719i 0.418693 + 0.725197i 0.995808 0.0914653i \(-0.0291551\pi\)
−0.577115 + 0.816663i \(0.695822\pi\)
\(224\) 0 0
\(225\) 47.9723 + 15.8448i 0.213210 + 0.0704213i
\(226\) 250.973 1.11050
\(227\) 175.411 101.274i 0.772737 0.446140i −0.0611131 0.998131i \(-0.519465\pi\)
0.833850 + 0.551991i \(0.186132\pi\)
\(228\) 23.8818 148.453i 0.104745 0.651110i
\(229\) −39.6366 + 68.6525i −0.173085 + 0.299793i −0.939497 0.342557i \(-0.888707\pi\)
0.766412 + 0.642350i \(0.222040\pi\)
\(230\) 155.506 + 89.7816i 0.676114 + 0.390355i
\(231\) 0 0
\(232\) 177.598 + 307.609i 0.765509 + 1.32590i
\(233\) 326.122i 1.39967i −0.714306 0.699833i \(-0.753258\pi\)
0.714306 0.699833i \(-0.246742\pi\)
\(234\) 78.6900 + 88.2512i 0.336282 + 0.377142i
\(235\) 90.9629 0.387076
\(236\) 526.142 303.768i 2.22941 1.28715i
\(237\) 323.154 + 262.985i 1.36352 + 1.10964i
\(238\) 0 0
\(239\) −210.918 121.774i −0.882503 0.509514i −0.0110203 0.999939i \(-0.503508\pi\)
−0.871483 + 0.490426i \(0.836841\pi\)
\(240\) 4.23150 + 11.1039i 0.0176313 + 0.0462661i
\(241\) 14.1702 + 24.5436i 0.0587976 + 0.101840i 0.893926 0.448215i \(-0.147940\pi\)
−0.835128 + 0.550055i \(0.814607\pi\)
\(242\) 618.569i 2.55607i
\(243\) 60.0423 + 235.465i 0.247088 + 0.968993i
\(244\) −471.478 −1.93229
\(245\) 0 0
\(246\) 290.277 110.620i 1.17999 0.449675i
\(247\) 15.9799 27.6779i 0.0646958 0.112056i
\(248\) −197.765 114.180i −0.797440 0.460402i
\(249\) 29.9399 36.7899i 0.120241 0.147751i
\(250\) 172.887 + 299.449i 0.691549 + 1.19780i
\(251\) 140.132i 0.558294i −0.960248 0.279147i \(-0.909948\pi\)
0.960248 0.279147i \(-0.0900516\pi\)
\(252\) 0 0
\(253\) 178.082 0.703882
\(254\) 39.2909 22.6846i 0.154688 0.0893094i
\(255\) −43.6383 + 271.262i −0.171131 + 1.06377i
\(256\) 118.593 205.409i 0.463253 0.802378i
\(257\) 95.8445 + 55.3359i 0.372936 + 0.215315i 0.674740 0.738055i \(-0.264256\pi\)
−0.301804 + 0.953370i \(0.597589\pi\)
\(258\) −64.0176 10.2986i −0.248130 0.0399171i
\(259\) 0 0
\(260\) 144.122i 0.554316i
\(261\) −130.059 + 393.772i −0.498311 + 1.50870i
\(262\) 71.7884 0.274001
\(263\) 42.7543 24.6842i 0.162564 0.0938563i −0.416511 0.909131i \(-0.636747\pi\)
0.579075 + 0.815274i \(0.303414\pi\)
\(264\) −317.284 258.208i −1.20183 0.978059i
\(265\) −104.106 + 180.317i −0.392853 + 0.680441i
\(266\) 0 0
\(267\) 57.9095 + 151.960i 0.216890 + 0.569139i
\(268\) −38.9583 67.4777i −0.145367 0.251783i
\(269\) 187.108i 0.695568i 0.937575 + 0.347784i \(0.113066\pi\)
−0.937575 + 0.347784i \(0.886934\pi\)
\(270\) 221.743 427.477i 0.821269 1.58325i
\(271\) 216.293 0.798128 0.399064 0.916923i \(-0.369335\pi\)
0.399064 + 0.916923i \(0.369335\pi\)
\(272\) −10.2620 + 5.92476i −0.0377279 + 0.0217822i
\(273\) 0 0
\(274\) −59.7747 + 103.533i −0.218156 + 0.377857i
\(275\) −85.9920 49.6475i −0.312698 0.180536i
\(276\) 121.845 149.723i 0.441469 0.542473i
\(277\) −39.0618 67.6570i −0.141017 0.244249i 0.786863 0.617128i \(-0.211704\pi\)
−0.927880 + 0.372879i \(0.878371\pi\)
\(278\) 454.753i 1.63580i
\(279\) −54.1661 261.051i −0.194144 0.935666i
\(280\) 0 0
\(281\) −385.051 + 222.309i −1.37029 + 0.791135i −0.990964 0.134129i \(-0.957176\pi\)
−0.379323 + 0.925264i \(0.623843\pi\)
\(282\) 25.2520 156.970i 0.0895462 0.556632i
\(283\) −64.2122 + 111.219i −0.226898 + 0.392999i −0.956887 0.290460i \(-0.906192\pi\)
0.729989 + 0.683459i \(0.239525\pi\)
\(284\) 110.779 + 63.9584i 0.390068 + 0.225206i
\(285\) −128.514 20.6743i −0.450927 0.0725413i
\(286\) −116.194 201.254i −0.406272 0.703684i
\(287\) 0 0
\(288\) 292.063 60.6008i 1.01411 0.210419i
\(289\) 15.0199 0.0519719
\(290\) 711.720 410.912i 2.45421 1.41694i
\(291\) 400.772 + 326.151i 1.37722 + 1.12079i
\(292\) −73.4574 + 127.232i −0.251566 + 0.435726i
\(293\) 42.6510 + 24.6246i 0.145567 + 0.0840429i 0.571014 0.820940i \(-0.306550\pi\)
−0.425448 + 0.904983i \(0.639883\pi\)
\(294\) 0 0
\(295\) −262.969 455.475i −0.891420 1.54398i
\(296\) 240.432i 0.812270i
\(297\) −21.5248 477.109i −0.0724741 1.60643i
\(298\) −373.024 −1.25176
\(299\) 35.5334 20.5152i 0.118841 0.0686127i
\(300\) −100.578 + 38.3285i −0.335259 + 0.127762i
\(301\) 0 0
\(302\) 419.635 + 242.276i 1.38952 + 0.802239i
\(303\) 32.7928 40.2955i 0.108227 0.132988i
\(304\) −2.80694 4.86177i −0.00923337 0.0159927i
\(305\) 408.153i 1.33821i
\(306\) 455.989 + 150.609i 1.49016 + 0.492186i
\(307\) 387.296 1.26155 0.630776 0.775965i \(-0.282737\pi\)
0.630776 + 0.775965i \(0.282737\pi\)
\(308\) 0 0
\(309\) 13.1509 81.7481i 0.0425596 0.264557i
\(310\) −264.179 + 457.572i −0.852191 + 1.47604i
\(311\) −87.5525 50.5485i −0.281519 0.162535i 0.352592 0.935777i \(-0.385300\pi\)
−0.634111 + 0.773242i \(0.718634\pi\)
\(312\) −93.0544 14.9698i −0.298251 0.0479801i
\(313\) 182.396 + 315.918i 0.582733 + 1.00932i 0.995154 + 0.0983303i \(0.0313502\pi\)
−0.412420 + 0.910994i \(0.635316\pi\)
\(314\) 883.436i 2.81349i
\(315\) 0 0
\(316\) −887.634 −2.80897
\(317\) −28.7096 + 16.5755i −0.0905665 + 0.0522886i −0.544599 0.838696i \(-0.683318\pi\)
0.454033 + 0.890985i \(0.349985\pi\)
\(318\) 282.264 + 229.708i 0.887621 + 0.722353i
\(319\) 407.522 705.849i 1.27750 2.21269i
\(320\) −498.208 287.641i −1.55690 0.898877i
\(321\) −130.869 343.413i −0.407692 1.06982i
\(322\) 0 0
\(323\) 129.802i 0.401864i
\(324\) −415.857 308.345i −1.28351 0.951683i
\(325\) −22.8777 −0.0703929
\(326\) 621.575 358.866i 1.90667 1.10082i
\(327\) −95.7202 + 36.4775i −0.292722 + 0.111552i
\(328\) −123.809 + 214.444i −0.377468 + 0.653794i
\(329\) 0 0
\(330\) −597.419 + 734.103i −1.81036 + 2.22456i
\(331\) 45.2538 + 78.3820i 0.136719 + 0.236804i 0.926253 0.376903i \(-0.123011\pi\)
−0.789534 + 0.613707i \(0.789678\pi\)
\(332\) 101.054i 0.304380i
\(333\) −209.514 + 186.815i −0.629171 + 0.561006i
\(334\) −233.712 −0.699737
\(335\) −58.4148 + 33.7258i −0.174373 + 0.100674i
\(336\) 0 0
\(337\) 216.839 375.576i 0.643438 1.11447i −0.341221 0.939983i \(-0.610841\pi\)
0.984660 0.174485i \(-0.0558261\pi\)
\(338\) 425.426 + 245.620i 1.25866 + 0.726686i
\(339\) −230.602 37.0973i −0.680242 0.109431i
\(340\) −292.671 506.921i −0.860797 1.49094i
\(341\) 524.000i 1.53666i
\(342\) −71.3532 + 216.032i −0.208635 + 0.631671i
\(343\) 0 0
\(344\) 44.7614 25.8430i 0.130120 0.0751250i
\(345\) −129.613 105.480i −0.375691 0.305740i
\(346\) −340.365 + 589.530i −0.983715 + 1.70384i
\(347\) 10.1281 + 5.84745i 0.0291876 + 0.0168514i 0.514523 0.857477i \(-0.327969\pi\)
−0.485335 + 0.874328i \(0.661302\pi\)
\(348\) −314.613 825.573i −0.904059 2.37234i
\(349\) −91.7075 158.842i −0.262772 0.455135i 0.704205 0.709996i \(-0.251303\pi\)
−0.966978 + 0.254862i \(0.917970\pi\)
\(350\) 0 0
\(351\) −59.2583 92.7196i −0.168827 0.264159i
\(352\) −586.250 −1.66548
\(353\) −58.9619 + 34.0417i −0.167031 + 0.0964353i −0.581185 0.813771i \(-0.697411\pi\)
0.414154 + 0.910207i \(0.364077\pi\)
\(354\) −858.994 + 327.349i −2.42654 + 0.924715i
\(355\) 55.3681 95.9004i 0.155967 0.270142i
\(356\) −300.039 173.228i −0.842807 0.486595i
\(357\) 0 0
\(358\) 129.528 + 224.350i 0.361811 + 0.626675i
\(359\) 445.910i 1.24209i 0.783775 + 0.621044i \(0.213291\pi\)
−0.783775 + 0.621044i \(0.786709\pi\)
\(360\) 77.9885 + 375.862i 0.216635 + 1.04406i
\(361\) −299.504 −0.829652
\(362\) −343.222 + 198.159i −0.948127 + 0.547401i
\(363\) −91.4332 + 568.362i −0.251882 + 1.56574i
\(364\) 0 0
\(365\) 110.143 + 63.5913i 0.301763 + 0.174223i
\(366\) 704.331 + 113.307i 1.92440 + 0.309581i
\(367\) 63.3424 + 109.712i 0.172595 + 0.298943i 0.939326 0.343025i \(-0.111451\pi\)
−0.766731 + 0.641968i \(0.778118\pi\)
\(368\) 7.20719i 0.0195848i
\(369\) −283.068 + 58.7344i −0.767121 + 0.159172i
\(370\) 556.291 1.50349
\(371\) 0 0
\(372\) 440.553 + 358.526i 1.18428 + 0.963779i
\(373\) 306.165 530.293i 0.820817 1.42170i −0.0842582 0.996444i \(-0.526852\pi\)
0.905075 0.425252i \(-0.139815\pi\)
\(374\) −817.377 471.913i −2.18550 1.26180i
\(375\) −114.592 300.699i −0.305578 0.801864i
\(376\) 63.3667 + 109.754i 0.168528 + 0.291900i
\(377\) 187.787i 0.498110i
\(378\) 0 0
\(379\) 410.847 1.08403 0.542015 0.840369i \(-0.317662\pi\)
0.542015 + 0.840369i \(0.317662\pi\)
\(380\) 240.161 138.657i 0.632003 0.364887i
\(381\) −39.4548 + 15.0356i −0.103556 + 0.0394636i
\(382\) −572.973 + 992.418i −1.49993 + 2.59795i
\(383\) 190.627 + 110.059i 0.497722 + 0.287360i 0.727772 0.685819i \(-0.240556\pi\)
−0.230051 + 0.973179i \(0.573889\pi\)
\(384\) −383.638 + 471.411i −0.999056 + 1.22763i
\(385\) 0 0
\(386\) 127.844i 0.331203i
\(387\) 57.2992 + 18.9254i 0.148060 + 0.0489028i
\(388\) −1100.83 −2.83720
\(389\) −149.180 + 86.1293i −0.383497 + 0.221412i −0.679339 0.733825i \(-0.737733\pi\)
0.295842 + 0.955237i \(0.404400\pi\)
\(390\) −34.6358 + 215.301i −0.0888098 + 0.552055i
\(391\) 83.3209 144.316i 0.213097 0.369095i
\(392\) 0 0
\(393\) −65.9615 10.6113i −0.167841 0.0270008i
\(394\) −210.554 364.691i −0.534402 0.925611i
\(395\) 768.416i 1.94536i
\(396\) 677.161 + 759.439i 1.71000 + 1.91778i
\(397\) −371.042 −0.934616 −0.467308 0.884095i \(-0.654776\pi\)
−0.467308 + 0.884095i \(0.654776\pi\)
\(398\) 605.912 349.824i 1.52239 0.878954i
\(399\) 0 0
\(400\) −2.00929 + 3.48020i −0.00502323 + 0.00870049i
\(401\) 259.303 + 149.708i 0.646640 + 0.373338i 0.787168 0.616739i \(-0.211547\pi\)
−0.140528 + 0.990077i \(0.544880\pi\)
\(402\) 41.9826 + 110.166i 0.104434 + 0.274045i
\(403\) 60.3652 + 104.556i 0.149790 + 0.259443i
\(404\) 110.683i 0.273968i
\(405\) −266.932 + 360.004i −0.659090 + 0.888898i
\(406\) 0 0
\(407\) 477.788 275.851i 1.17393 0.677767i
\(408\) −357.699 + 136.314i −0.876714 + 0.334102i
\(409\) −187.201 + 324.241i −0.457703 + 0.792766i −0.998839 0.0481696i \(-0.984661\pi\)
0.541136 + 0.840935i \(0.317995\pi\)
\(410\) 496.163 + 286.460i 1.21015 + 0.698682i
\(411\) 70.2265 86.2938i 0.170867 0.209961i
\(412\) 88.2000 + 152.767i 0.214078 + 0.370793i
\(413\) 0 0
\(414\) −218.004 + 194.385i −0.526580 + 0.469530i
\(415\) 87.4816 0.210799
\(416\) −116.976 + 67.5364i −0.281193 + 0.162347i
\(417\) 67.2189 417.842i 0.161196 1.00202i
\(418\) 223.576 387.244i 0.534870 0.926422i
\(419\) −350.317 202.256i −0.836080 0.482711i 0.0198501 0.999803i \(-0.493681\pi\)
−0.855930 + 0.517092i \(0.827014\pi\)
\(420\) 0 0
\(421\) −231.002 400.107i −0.548698 0.950372i −0.998364 0.0571757i \(-0.981790\pi\)
0.449666 0.893197i \(-0.351543\pi\)
\(422\) 352.086i 0.834327i
\(423\) −46.4048 + 140.497i −0.109704 + 0.332144i
\(424\) −290.090 −0.684174
\(425\) −80.4677 + 46.4580i −0.189336 + 0.109313i
\(426\) −150.120 122.169i −0.352395 0.286781i
\(427\) 0 0
\(428\) 678.055 + 391.475i 1.58424 + 0.914662i
\(429\) 77.0147 + 202.094i 0.179521 + 0.471081i
\(430\) −59.7933 103.565i −0.139054 0.240849i
\(431\) 228.122i 0.529285i 0.964347 + 0.264643i \(0.0852540\pi\)
−0.964347 + 0.264643i \(0.914746\pi\)
\(432\) −19.3092 + 0.871134i −0.0446972 + 0.00201651i
\(433\) −777.626 −1.79590 −0.897951 0.440095i \(-0.854945\pi\)
−0.897951 + 0.440095i \(0.854945\pi\)
\(434\) 0 0
\(435\) −714.690 + 272.357i −1.64297 + 0.626108i
\(436\) 109.117 188.996i 0.250268 0.433477i
\(437\) 68.3719 + 39.4745i 0.156457 + 0.0903307i
\(438\) 140.313 172.416i 0.320350 0.393643i
\(439\) 34.4006 + 59.5836i 0.0783612 + 0.135726i 0.902543 0.430600i \(-0.141698\pi\)
−0.824182 + 0.566325i \(0.808365\pi\)
\(440\) 754.458i 1.71468i
\(441\) 0 0
\(442\) −217.459 −0.491988
\(443\) 180.419 104.165i 0.407267 0.235136i −0.282348 0.959312i \(-0.591113\pi\)
0.689615 + 0.724176i \(0.257780\pi\)
\(444\) 94.9850 590.441i 0.213930 1.32982i
\(445\) −149.961 + 259.741i −0.336992 + 0.583687i
\(446\) 521.312 + 300.979i 1.16886 + 0.674842i
\(447\) 342.747 + 55.1382i 0.766772 + 0.123352i
\(448\) 0 0
\(449\) 259.045i 0.576937i 0.957489 + 0.288469i \(0.0931461\pi\)
−0.957489 + 0.288469i \(0.906854\pi\)
\(450\) 159.462 33.0871i 0.354360 0.0735270i
\(451\) 568.194 1.25985
\(452\) 430.938 248.802i 0.953402 0.550447i
\(453\) −349.763 284.639i −0.772103 0.628343i
\(454\) 326.463 565.450i 0.719081 1.24548i
\(455\) 0 0
\(456\) −64.5806 169.465i −0.141624 0.371635i
\(457\) −79.7186 138.077i −0.174439 0.302137i 0.765528 0.643403i \(-0.222478\pi\)
−0.939967 + 0.341265i \(0.889144\pi\)
\(458\) 255.542i 0.557952i
\(459\) −396.716 205.786i −0.864305 0.448336i
\(460\) 356.020 0.773957
\(461\) 176.910 102.139i 0.383752 0.221559i −0.295697 0.955282i \(-0.595552\pi\)
0.679449 + 0.733722i \(0.262219\pi\)
\(462\) 0 0
\(463\) −381.105 + 660.092i −0.823120 + 1.42569i 0.0802276 + 0.996777i \(0.474435\pi\)
−0.903348 + 0.428909i \(0.858898\pi\)
\(464\) −28.5666 16.4929i −0.0615659 0.0355451i
\(465\) 310.372 381.383i 0.667467 0.820178i
\(466\) −525.638 910.432i −1.12798 1.95372i
\(467\) 533.524i 1.14245i −0.820793 0.571225i \(-0.806468\pi\)
0.820793 0.571225i \(-0.193532\pi\)
\(468\) 222.604 + 73.5241i 0.475650 + 0.157103i
\(469\) 0 0
\(470\) 253.940 146.612i 0.540298 0.311941i
\(471\) 130.584 811.730i 0.277249 1.72342i
\(472\) 366.379 634.588i 0.776227 1.34447i
\(473\) −102.711 59.3001i −0.217148 0.125370i
\(474\) 1326.02 + 213.318i 2.79751 + 0.450039i
\(475\) −22.0102 38.1228i −0.0463372 0.0802584i
\(476\) 0 0
\(477\) −225.399 252.786i −0.472535 0.529950i
\(478\) −785.091 −1.64245
\(479\) 523.526 302.258i 1.09296 0.631019i 0.158595 0.987344i \(-0.449304\pi\)
0.934362 + 0.356325i \(0.115970\pi\)
\(480\) 426.689 + 347.243i 0.888936 + 0.723423i
\(481\) 63.5565 110.083i 0.132134 0.228863i
\(482\) 79.1177 + 45.6787i 0.164145 + 0.0947690i
\(483\) 0 0
\(484\) −613.220 1062.13i −1.26698 2.19448i
\(485\) 952.982i 1.96491i
\(486\) 547.138 + 560.571i 1.12580 + 1.15344i
\(487\) 156.203 0.320746 0.160373 0.987056i \(-0.448730\pi\)
0.160373 + 0.987056i \(0.448730\pi\)
\(488\) −492.471 + 284.328i −1.00916 + 0.582640i
\(489\) −624.169 + 237.861i −1.27642 + 0.486423i
\(490\) 0 0
\(491\) −346.903 200.285i −0.706523 0.407911i 0.103249 0.994656i \(-0.467076\pi\)
−0.809772 + 0.586744i \(0.800409\pi\)
\(492\) 388.763 477.709i 0.790169 0.970954i
\(493\) −381.342 660.505i −0.773514 1.33977i
\(494\) 103.024i 0.208551i
\(495\) 657.439 586.212i 1.32816 1.18427i
\(496\) 21.2069 0.0427559
\(497\) 0 0
\(498\) 24.2856 150.963i 0.0487662 0.303138i
\(499\) 61.1444 105.905i 0.122534 0.212235i −0.798232 0.602350i \(-0.794231\pi\)
0.920766 + 0.390115i \(0.127565\pi\)
\(500\) 593.719 + 342.784i 1.18744 + 0.685567i
\(501\) 214.743 + 34.5459i 0.428628 + 0.0689539i
\(502\) −225.862 391.204i −0.449924 0.779291i
\(503\) 786.814i 1.56424i −0.623126 0.782121i \(-0.714138\pi\)
0.623126 0.782121i \(-0.285862\pi\)
\(504\) 0 0
\(505\) 95.8173 0.189737
\(506\) 497.150 287.030i 0.982510 0.567252i
\(507\) −354.590 288.568i −0.699388 0.569167i
\(508\) 44.9768 77.9021i 0.0885370 0.153351i
\(509\) −781.867 451.411i −1.53609 0.886859i −0.999062 0.0432914i \(-0.986216\pi\)
−0.537023 0.843568i \(-0.680451\pi\)
\(510\) 315.391 + 827.614i 0.618413 + 1.62277i
\(511\) 0 0
\(512\) 45.8004i 0.0894539i
\(513\) 97.4942 187.950i 0.190047 0.366374i
\(514\) 356.758 0.694081
\(515\) 132.249 76.3539i 0.256794 0.148260i
\(516\) −120.132 + 45.7805i −0.232814 + 0.0887219i
\(517\) 145.403 251.846i 0.281244 0.487129i
\(518\) 0 0
\(519\) 399.880 491.369i 0.770482 0.946762i
\(520\) −86.9141 150.540i −0.167142 0.289499i
\(521\) 511.236i 0.981259i −0.871368 0.490630i \(-0.836767\pi\)
0.871368 0.490630i \(-0.163233\pi\)
\(522\) 271.590 + 1308.91i 0.520287 + 2.50750i
\(523\) 979.307 1.87248 0.936240 0.351360i \(-0.114281\pi\)
0.936240 + 0.351360i \(0.114281\pi\)
\(524\) 123.266 71.1675i 0.235240 0.135816i
\(525\) 0 0
\(526\) 79.5711 137.821i 0.151276 0.262018i
\(527\) 424.645 + 245.169i 0.805778 + 0.465216i
\(528\) 37.5068 + 6.03378i 0.0710357 + 0.0114276i
\(529\) −213.822 370.351i −0.404200 0.700096i
\(530\) 671.185i 1.26639i
\(531\) 837.659 173.808i 1.57751 0.327322i
\(532\) 0 0
\(533\) 113.374 65.4564i 0.212709 0.122807i
\(534\) 406.592 + 330.887i 0.761408 + 0.619639i
\(535\) 338.896 586.986i 0.633451 1.09717i
\(536\) −81.3860 46.9882i −0.151840 0.0876646i
\(537\) −85.8529 225.286i −0.159875 0.419527i
\(538\) 301.577 + 522.346i 0.560552 + 0.970904i
\(539\) 0 0
\(540\) −43.0322 953.833i −0.0796893 1.76636i
\(541\) −700.529 −1.29488 −0.647439 0.762117i \(-0.724160\pi\)
−0.647439 + 0.762117i \(0.724160\pi\)
\(542\) 603.822 348.617i 1.11406 0.643204i
\(543\) 344.655 131.342i 0.634723 0.241883i
\(544\) −274.294 + 475.091i −0.504217 + 0.873329i
\(545\) −163.612 94.4613i −0.300205 0.173324i
\(546\) 0 0
\(547\) 294.015 + 509.248i 0.537504 + 0.930984i 0.999038 + 0.0438616i \(0.0139660\pi\)
−0.461534 + 0.887123i \(0.652701\pi\)
\(548\) 237.031i 0.432538i
\(549\) −630.414 208.220i −1.14830 0.379271i
\(550\) −320.084 −0.581970
\(551\) 312.924 180.667i 0.567920 0.327889i
\(552\) 36.9794 229.869i 0.0669916 0.416430i
\(553\) 0 0
\(554\) −218.097 125.918i −0.393676 0.227289i
\(555\) −511.139 82.2276i −0.920970 0.148158i
\(556\) 450.820 + 780.843i 0.810827 + 1.40439i
\(557\) 400.729i 0.719442i 0.933060 + 0.359721i \(0.117128\pi\)
−0.933060 + 0.359721i \(0.882872\pi\)
\(558\) −571.972 641.469i −1.02504 1.14959i
\(559\) −27.3257 −0.0488831
\(560\) 0 0
\(561\) 681.278 + 554.429i 1.21440 + 0.988287i
\(562\) −716.628 + 1241.24i −1.27514 + 2.20860i
\(563\) −78.9486 45.5810i −0.140228 0.0809609i 0.428244 0.903663i \(-0.359132\pi\)
−0.568473 + 0.822702i \(0.692466\pi\)
\(564\) −112.253 294.563i −0.199030 0.522274i
\(565\) −215.385 373.058i −0.381213 0.660281i
\(566\) 413.984i 0.731421i
\(567\) 0 0
\(568\) 154.282 0.271624
\(569\) −255.596 + 147.568i −0.449202 + 0.259347i −0.707493 0.706720i \(-0.750174\pi\)
0.258291 + 0.966067i \(0.416841\pi\)
\(570\) −392.094 + 149.421i −0.687885 + 0.262142i
\(571\) −457.407 + 792.252i −0.801062 + 1.38748i 0.117855 + 0.993031i \(0.462398\pi\)
−0.918917 + 0.394450i \(0.870935\pi\)
\(572\) −399.026 230.378i −0.697598 0.402758i
\(573\) 673.159 827.173i 1.17480 1.44358i
\(574\) 0 0
\(575\) 56.5140i 0.0982852i
\(576\) 698.437 622.768i 1.21256 1.08120i
\(577\) −534.601 −0.926519 −0.463259 0.886223i \(-0.653320\pi\)
−0.463259 + 0.886223i \(0.653320\pi\)
\(578\) 41.9308 24.2088i 0.0725447 0.0418837i
\(579\) −18.8972 + 117.467i −0.0326376 + 0.202880i
\(580\) 814.715 1411.13i 1.40468 2.43298i
\(581\) 0 0
\(582\) 1644.51 + 264.555i 2.82563 + 0.454562i
\(583\) 332.825 + 576.469i 0.570883 + 0.988798i
\(584\) 177.196i 0.303418i
\(585\) 63.6491 192.706i 0.108802 0.329413i
\(586\) 158.758 0.270918
\(587\) −299.889 + 173.141i −0.510884 + 0.294959i −0.733197 0.680016i \(-0.761973\pi\)
0.222313 + 0.974975i \(0.428639\pi\)
\(588\) 0 0
\(589\) −116.152 + 201.182i −0.197203 + 0.341565i
\(590\) −1468.25 847.697i −2.48857 1.43677i
\(591\) 139.558 + 366.213i 0.236139 + 0.619649i
\(592\) −11.1640 19.3367i −0.0188582 0.0326633i
\(593\) 4.10166i 0.00691679i 0.999994 + 0.00345840i \(0.00110084\pi\)
−0.999994 + 0.00345840i \(0.998899\pi\)
\(594\) −829.087 1297.25i −1.39577 2.18392i
\(595\) 0 0
\(596\) −640.509 + 369.798i −1.07468 + 0.620467i
\(597\) −608.441 + 231.867i −1.01916 + 0.388388i
\(598\) 66.1320 114.544i 0.110589 0.191545i
\(599\) −146.853 84.7858i −0.245164 0.141546i 0.372384 0.928079i \(-0.378541\pi\)
−0.617548 + 0.786533i \(0.711874\pi\)
\(600\) −81.9417 + 100.689i −0.136569 + 0.167815i
\(601\) 312.975 + 542.089i 0.520757 + 0.901978i 0.999709 + 0.0241366i \(0.00768366\pi\)
−0.478951 + 0.877841i \(0.658983\pi\)
\(602\) 0 0
\(603\) −22.2909 107.430i −0.0369667 0.178159i
\(604\) 960.723 1.59060
\(605\) −919.473 + 530.858i −1.51979 + 0.877451i
\(606\) 26.5996 165.347i 0.0438938 0.272850i
\(607\) −18.8059 + 32.5727i −0.0309817 + 0.0536618i −0.881101 0.472929i \(-0.843197\pi\)
0.850119 + 0.526591i \(0.176530\pi\)
\(608\) −225.081 129.951i −0.370200 0.213735i
\(609\) 0 0
\(610\) 657.855 + 1139.44i 1.07845 + 1.86793i
\(611\) 67.0022i 0.109660i
\(612\) 932.272 193.439i 1.52332 0.316077i
\(613\) 298.038 0.486195 0.243098 0.970002i \(-0.421836\pi\)
0.243098 + 0.970002i \(0.421836\pi\)
\(614\) 1081.21 624.238i 1.76093 1.01667i
\(615\) −413.548 336.549i −0.672436 0.547233i
\(616\) 0 0
\(617\) 818.560 + 472.596i 1.32668 + 0.765957i 0.984784 0.173782i \(-0.0555987\pi\)
0.341893 + 0.939739i \(0.388932\pi\)
\(618\) −95.0469 249.412i −0.153797 0.403579i
\(619\) −596.799 1033.69i −0.964133 1.66993i −0.711926 0.702255i \(-0.752177\pi\)
−0.252208 0.967673i \(-0.581157\pi\)
\(620\) 1047.58i 1.68964i
\(621\) 229.042 146.384i 0.368828 0.235723i
\(622\) −325.892 −0.523943
\(623\) 0 0
\(624\) 8.17896 3.11687i 0.0131073 0.00499499i
\(625\) 366.913 635.512i 0.587061 1.01682i
\(626\) 1018.38 + 587.964i 1.62681 + 0.939239i
\(627\) −262.669 + 322.765i −0.418929 + 0.514777i
\(628\) 875.795 + 1516.92i 1.39458 + 2.41548i
\(629\) 516.260i 0.820764i
\(630\) 0 0
\(631\) −823.055 −1.30437 −0.652183 0.758062i \(-0.726147\pi\)
−0.652183 + 0.758062i \(0.726147\pi\)
\(632\) −927.158 + 535.295i −1.46702 + 0.846985i
\(633\) −52.0432 + 323.508i −0.0822168 + 0.511072i
\(634\) −53.4322 + 92.5472i −0.0842779 + 0.145974i
\(635\) −67.4390 38.9359i −0.106203 0.0613165i
\(636\) 712.388 + 114.603i 1.12011 + 0.180193i
\(637\) 0 0
\(638\) 2627.35i 4.11810i
\(639\) 119.877 + 134.443i 0.187601 + 0.210395i
\(640\) −1120.95 −1.75149
\(641\) 617.070 356.265i 0.962667 0.555796i 0.0656744 0.997841i \(-0.479080\pi\)
0.896993 + 0.442045i \(0.145747\pi\)
\(642\) −918.852 747.769i −1.43123 1.16475i
\(643\) −534.902 + 926.478i −0.831885 + 1.44087i 0.0646564 + 0.997908i \(0.479405\pi\)
−0.896542 + 0.442960i \(0.853928\pi\)
\(644\) 0 0
\(645\) 39.6317 + 103.997i 0.0614445 + 0.161236i
\(646\) −209.213 362.367i −0.323859 0.560940i
\(647\) 1124.01i 1.73727i −0.495456 0.868633i \(-0.664999\pi\)
0.495456 0.868633i \(-0.335001\pi\)
\(648\) −620.324 71.2891i −0.957291 0.110014i
\(649\) −1681.41 −2.59077
\(650\) −63.8674 + 36.8739i −0.0982576 + 0.0567290i
\(651\) 0 0
\(652\) 711.525 1232.40i 1.09130 1.89018i
\(653\) −41.9432 24.2159i −0.0642315 0.0370841i 0.467540 0.883972i \(-0.345140\pi\)
−0.531772 + 0.846888i \(0.678474\pi\)
\(654\) −208.427 + 256.114i −0.318696 + 0.391611i
\(655\) −61.6090 106.710i −0.0940595 0.162916i
\(656\) 22.9955i 0.0350541i
\(657\) −154.410 + 137.681i −0.235023 + 0.209560i
\(658\) 0 0
\(659\) −818.128 + 472.346i −1.24147 + 0.716762i −0.969393 0.245514i \(-0.921043\pi\)
−0.272076 + 0.962276i \(0.587710\pi\)
\(660\) −298.056 + 1852.76i −0.451600 + 2.80721i
\(661\) 140.597 243.521i 0.212703 0.368413i −0.739856 0.672765i \(-0.765107\pi\)
0.952560 + 0.304352i \(0.0984399\pi\)
\(662\) 252.669 + 145.879i 0.381676 + 0.220361i
\(663\) 199.808 + 32.1434i 0.301370 + 0.0484818i
\(664\) 60.9415 + 105.554i 0.0917794 + 0.158967i
\(665\) 0 0
\(666\) −283.792 + 859.220i −0.426114 + 1.29012i
\(667\) 463.885 0.695480
\(668\) −401.300 + 231.691i −0.600749 + 0.346843i
\(669\) −434.509 353.607i −0.649491 0.528561i
\(670\) −108.717 + 188.304i −0.162265 + 0.281051i
\(671\) 1130.04 + 652.429i 1.68411 + 0.972323i
\(672\) 0 0
\(673\) 246.892 + 427.630i 0.366854 + 0.635409i 0.989072 0.147435i \(-0.0471017\pi\)
−0.622218 + 0.782844i \(0.713768\pi\)
\(674\) 1397.99i 2.07417i
\(675\) −151.410 + 6.83085i −0.224311 + 0.0101198i
\(676\) 973.983 1.44080
\(677\) −611.085 + 352.810i −0.902636 + 0.521137i −0.878055 0.478561i \(-0.841159\pi\)
−0.0245816 + 0.999698i \(0.507825\pi\)
\(678\) −703.562 + 268.116i −1.03770 + 0.395452i
\(679\) 0 0
\(680\) −611.405 352.995i −0.899126 0.519110i
\(681\) −383.546 + 471.298i −0.563210 + 0.692068i
\(682\) 844.575 + 1462.85i 1.23838 + 2.14494i
\(683\) 1166.52i 1.70794i −0.520326 0.853968i \(-0.674190\pi\)
0.520326 0.853968i \(-0.325810\pi\)
\(684\) 91.6447 + 441.678i 0.133983 + 0.645727i
\(685\) 205.195 0.299555
\(686\) 0 0
\(687\) 37.7727 234.800i 0.0549821 0.341777i
\(688\) −2.39995 + 4.15683i −0.00348829 + 0.00604190i
\(689\) 132.819 + 76.6832i 0.192771 + 0.111296i
\(690\) −531.851 85.5597i −0.770799 0.124000i
\(691\) 182.834 + 316.677i 0.264593 + 0.458289i 0.967457 0.253036i \(-0.0814290\pi\)
−0.702864 + 0.711324i \(0.748096\pi\)
\(692\) 1349.69i 1.95041i
\(693\) 0 0
\(694\) 37.6993 0.0543217
\(695\) 675.968 390.270i 0.972616 0.561540i
\(696\) −826.490 672.603i −1.18749 0.966384i
\(697\) 265.846 460.459i 0.381415 0.660630i
\(698\) −512.038 295.625i −0.733578 0.423532i
\(699\) 348.399 + 914.232i 0.498425 + 1.30791i
\(700\) 0 0
\(701\) 254.519i 0.363080i 0.983384 + 0.181540i \(0.0581083\pi\)
−0.983384 + 0.181540i \(0.941892\pi\)
\(702\) −314.875 163.333i −0.448539 0.232668i
\(703\) 244.586 0.347917
\(704\) −1592.76 + 919.581i −2.26244 + 1.30622i
\(705\) −255.000 + 97.1764i −0.361702 + 0.137839i
\(706\) −109.735 + 190.067i −0.155433 + 0.269217i
\(707\) 0 0
\(708\) −1150.44 + 1413.65i −1.62491 + 1.99668i
\(709\) 520.494 + 901.522i 0.734124 + 1.27154i 0.955107 + 0.296263i \(0.0957403\pi\)
−0.220982 + 0.975278i \(0.570926\pi\)
\(710\) 356.966i 0.502768i
\(711\) −1186.86 392.008i −1.66928 0.551347i
\(712\) −417.865 −0.586889
\(713\) −258.280 + 149.118i −0.362244 + 0.209142i
\(714\) 0 0
\(715\) −199.436 + 345.433i −0.278931 + 0.483123i
\(716\) 444.818 + 256.816i 0.621255 + 0.358682i
\(717\) 721.368 + 116.047i 1.00609 + 0.161851i
\(718\) 718.710 + 1244.84i 1.00099 + 1.73376i
\(719\) 754.646i 1.04958i 0.851232 + 0.524789i \(0.175856\pi\)
−0.851232 + 0.524789i \(0.824144\pi\)
\(720\) −23.7247 26.6073i −0.0329509 0.0369546i
\(721\) 0 0
\(722\) −836.123 + 482.736i −1.15807 + 0.668609i
\(723\) −65.9441 53.6658i −0.0912089 0.0742265i
\(724\) −392.891 + 680.507i −0.542667 + 0.939927i
\(725\) −224.000 129.326i −0.308965 0.178381i
\(726\) 660.823 + 1734.06i 0.910225 + 2.38851i
\(727\) −698.773 1210.31i −0.961174 1.66480i −0.719561 0.694429i \(-0.755657\pi\)
−0.241612 0.970373i \(-0.577676\pi\)
\(728\) 0 0
\(729\) −419.869 595.946i −0.575952 0.817484i
\(730\) 409.981 0.561618
\(731\) −96.1126 + 55.4906i −0.131481 + 0.0759106i
\(732\) 1321.71 503.684i 1.80562 0.688092i
\(733\) 626.744 1085.55i 0.855039 1.48097i −0.0215697 0.999767i \(-0.506866\pi\)
0.876609 0.481204i \(-0.159800\pi\)
\(734\) 353.664 + 204.188i 0.481832 + 0.278186i
\(735\) 0 0
\(736\) −166.833 288.963i −0.226675 0.392613i
\(737\) 215.641i 0.292593i
\(738\) −695.570 + 620.211i −0.942506 + 0.840395i
\(739\) 1070.00 1.44790 0.723950 0.689852i \(-0.242324\pi\)
0.723950 + 0.689852i \(0.242324\pi\)
\(740\) 955.191 551.480i 1.29080 0.745243i
\(741\) −15.2284 + 94.6621i −0.0205512 + 0.127749i
\(742\) 0 0
\(743\) −620.266 358.111i −0.834813 0.481980i 0.0206847 0.999786i \(-0.493415\pi\)
−0.855498 + 0.517806i \(0.826749\pi\)
\(744\) 676.382 + 108.810i 0.909115 + 0.146251i
\(745\) 320.131 + 554.483i 0.429706 + 0.744272i
\(746\) 1973.88i 2.64596i
\(747\) −44.6288 + 135.120i −0.0597440 + 0.180883i
\(748\) −1871.32 −2.50177
\(749\) 0 0
\(750\) −804.566 654.762i −1.07275 0.873015i
\(751\) 60.3209 104.479i 0.0803208 0.139120i −0.823067 0.567944i \(-0.807739\pi\)
0.903388 + 0.428825i \(0.141072\pi\)
\(752\) −10.1925 5.88464i −0.0135538 0.00782531i
\(753\) 149.704 + 392.837i 0.198810 + 0.521696i
\(754\) −302.672 524.244i −0.401422 0.695284i
\(755\) 831.689i 1.10157i
\(756\) 0 0
\(757\) −369.403 −0.487983 −0.243992 0.969777i \(-0.578457\pi\)
−0.243992 + 0.969777i \(0.578457\pi\)
\(758\) 1146.96 662.196i 1.51314 0.873610i
\(759\) −499.225 + 190.247i −0.657740 + 0.250654i
\(760\) 167.237 289.662i 0.220048 0.381135i
\(761\) 992.067 + 572.770i 1.30364 + 0.752655i 0.981026 0.193877i \(-0.0621063\pi\)
0.322610 + 0.946532i \(0.395440\pi\)
\(762\) −85.9115 + 105.567i −0.112745 + 0.138540i
\(763\) 0 0
\(764\) 2272.07i 2.97391i
\(765\) −167.458 807.059i −0.218900 1.05498i
\(766\) 709.563 0.926323
\(767\) −335.498 + 193.700i −0.437416 + 0.252542i
\(768\) −113.016 + 702.524i −0.147156 + 0.914745i
\(769\) −319.295 + 553.035i −0.415208 + 0.719162i −0.995450 0.0952822i \(-0.969625\pi\)
0.580242 + 0.814444i \(0.302958\pi\)
\(770\) 0 0
\(771\) −327.801 52.7337i −0.425163 0.0683966i
\(772\) −126.738 219.517i −0.164169 0.284349i
\(773\) 195.650i 0.253105i −0.991960 0.126552i \(-0.959609\pi\)
0.991960 0.126552i \(-0.0403912\pi\)
\(774\) 190.465 39.5201i 0.246079 0.0510595i
\(775\) 166.290 0.214568
\(776\) −1149.85 + 663.867i −1.48177 + 0.855499i
\(777\) 0 0
\(778\) −277.643 + 480.892i −0.356868 + 0.618114i
\(779\) 218.149 + 125.949i 0.280038 + 0.161680i
\(780\) 153.967 + 404.024i 0.197394 + 0.517979i
\(781\) −177.011 306.591i −0.226646 0.392563i
\(782\) 537.181i 0.686932i
\(783\) −56.0698 1242.82i −0.0716090 1.58725i
\(784\) 0 0
\(785\) 1313.18 758.167i 1.67285 0.965818i
\(786\) −201.247 + 76.6921i −0.256040 + 0.0975727i
\(787\) −8.68274 + 15.0389i −0.0110327 + 0.0191092i −0.871489 0.490415i \(-0.836845\pi\)
0.860456 + 0.509524i \(0.170179\pi\)
\(788\) −723.073 417.466i −0.917605 0.529780i
\(789\) −93.4845 + 114.873i −0.118485 + 0.145593i
\(790\) 1238.52 + 2145.18i 1.56775 + 2.71542i
\(791\) 0 0
\(792\) 1165.30 + 384.887i 1.47134 + 0.485969i
\(793\) 300.641 0.379118
\(794\) −1035.83 + 598.040i −1.30458 + 0.753198i
\(795\) 99.2105 616.707i 0.124793 0.775732i
\(796\) 693.596 1201.34i 0.871352 1.50923i
\(797\) 871.920 + 503.403i 1.09400 + 0.631622i 0.934639 0.355598i \(-0.115723\pi\)
0.159363 + 0.987220i \(0.449056\pi\)
\(798\) 0 0
\(799\) −136.062 235.667i −0.170291 0.294952i
\(800\) 186.045i 0.232556i
\(801\) −324.680 364.130i −0.405344 0.454595i
\(802\) 965.189 1.20348
\(803\) 352.126 203.300i 0.438513 0.253176i
\(804\) 181.300 + 147.544i 0.225498 + 0.183512i
\(805\) 0 0
\(806\) 337.042 + 194.591i 0.418166 + 0.241428i
\(807\) −199.889 524.527i −0.247694 0.649971i
\(808\) 66.7484 + 115.612i 0.0826094 + 0.143084i
\(809\) 420.554i 0.519844i 0.965630 + 0.259922i \(0.0836968\pi\)
−0.965630 + 0.259922i \(0.916303\pi\)
\(810\) −164.943 + 1435.25i −0.203633 + 1.77192i
\(811\) −1318.39 −1.62564 −0.812819 0.582517i \(-0.802068\pi\)
−0.812819 + 0.582517i \(0.802068\pi\)
\(812\) 0 0
\(813\) −606.342 + 231.067i −0.745808 + 0.284216i
\(814\) 889.224 1540.18i 1.09241 1.89212i
\(815\) −1066.87 615.960i −1.30905 0.755780i
\(816\) 22.4384 27.5721i 0.0274980 0.0337893i
\(817\) −26.2895 45.5347i −0.0321781 0.0557341i
\(818\) 1206.91i 1.47544i
\(819\) 0 0
\(820\) 1135.93 1.38528
\(821\) −668.380 + 385.889i −0.814104 + 0.470023i −0.848379 0.529389i \(-0.822421\pi\)
0.0342747 + 0.999412i \(0.489088\pi\)
\(822\) 56.9638 354.095i 0.0692990 0.430773i
\(823\) −453.227 + 785.013i −0.550702 + 0.953843i 0.447522 + 0.894273i \(0.352306\pi\)
−0.998224 + 0.0595705i \(0.981027\pi\)
\(824\) 184.255 + 106.379i 0.223610 + 0.129101i
\(825\) 294.104 + 47.3128i 0.356489 + 0.0573489i
\(826\) 0 0
\(827\) 509.463i 0.616038i 0.951380 + 0.308019i \(0.0996660\pi\)
−0.951380 + 0.308019i \(0.900334\pi\)
\(828\) −181.624 + 549.892i −0.219353 + 0.664121i
\(829\) 665.170 0.802376 0.401188 0.915996i \(-0.368597\pi\)
0.401188 + 0.915996i \(0.368597\pi\)
\(830\) 244.221 141.001i 0.294243 0.169881i
\(831\) 181.782 + 147.935i 0.218751 + 0.178021i
\(832\) −211.873 + 366.974i −0.254655 + 0.441075i
\(833\) 0 0
\(834\) −485.817 1274.83i −0.582514 1.52857i
\(835\) 200.572 + 347.402i 0.240207 + 0.416050i
\(836\) 886.567i 1.06049i
\(837\) 430.729 + 673.949i 0.514610 + 0.805195i
\(838\) −1303.97 −1.55605
\(839\) −1237.78 + 714.635i −1.47531 + 0.851770i −0.999612 0.0278396i \(-0.991137\pi\)
−0.475696 + 0.879610i \(0.657804\pi\)
\(840\) 0 0
\(841\) 641.052 1110.33i 0.762250 1.32026i
\(842\) −1289.77 744.649i −1.53179 0.884381i
\(843\) 841.933 1034.56i 0.998734 1.22724i
\(844\) −349.041 604.557i −0.413556 0.716299i
\(845\) 843.167i 0.997831i
\(846\) 96.9027 + 467.018i 0.114542 + 0.552031i
\(847\) 0 0
\(848\) 23.3304 13.4698i 0.0275122 0.0158842i
\(849\) 61.1926 380.382i 0.0720761 0.448036i
\(850\) −149.761 + 259.393i −0.176189 + 0.305168i
\(851\) 271.935 + 157.002i 0.319547 + 0.184491i
\(852\) −378.879 60.9508i −0.444694 0.0715385i
\(853\) −485.171 840.341i −0.568782 0.985159i −0.996687 0.0813353i \(-0.974082\pi\)
0.427905 0.903824i \(-0.359252\pi\)
\(854\) 0 0
\(855\) 382.356 79.3359i 0.447200 0.0927905i
\(856\) 944.329 1.10319
\(857\) −1308.06 + 755.208i −1.52632 + 0.881223i −0.526812 + 0.849982i \(0.676613\pi\)
−0.999512 + 0.0312415i \(0.990054\pi\)
\(858\) 540.732 + 440.052i 0.630224 + 0.512881i
\(859\) −614.191 + 1063.81i −0.715007 + 1.23843i 0.247950 + 0.968773i \(0.420243\pi\)
−0.962957 + 0.269655i \(0.913090\pi\)
\(860\) −205.339 118.552i −0.238766 0.137852i
\(861\) 0 0
\(862\) 367.683 + 636.845i 0.426546 + 0.738800i
\(863\) 1492.67i 1.72963i −0.502091 0.864815i \(-0.667436\pi\)
0.502091 0.864815i \(-0.332564\pi\)
\(864\) −754.011 + 481.898i −0.872698 + 0.557752i
\(865\) 1168.41 1.35076
\(866\) −2170.89 + 1253.36i −2.50680 + 1.44730i
\(867\) −42.1058 + 16.0459i −0.0485650 + 0.0185073i
\(868\) 0 0
\(869\) 2127.48 + 1228.30i 2.44820 + 1.41347i
\(870\) −1556.21 + 1912.26i −1.78875 + 2.19800i
\(871\) 24.8420 + 43.0277i 0.0285213 + 0.0494003i
\(872\) 263.215i 0.301852i
\(873\) −1471.93 486.164i −1.68606 0.556889i
\(874\) 254.497 0.291187
\(875\) 0 0
\(876\) 70.0031 435.149i 0.0799122 0.496746i
\(877\) 173.474 300.466i 0.197804 0.342607i −0.750012 0.661424i \(-0.769952\pi\)
0.947816 + 0.318817i \(0.103286\pi\)
\(878\) 192.071 + 110.892i 0.218760 + 0.126301i
\(879\) −145.872 23.4666i −0.165952 0.0266969i
\(880\) 35.0319 + 60.6770i 0.0398090 + 0.0689512i
\(881\) 738.403i 0.838142i 0.907953 + 0.419071i \(0.137644\pi\)
−0.907953 + 0.419071i \(0.862356\pi\)
\(882\) 0 0
\(883\) 872.215 0.987786 0.493893 0.869523i \(-0.335573\pi\)
0.493893 + 0.869523i \(0.335573\pi\)
\(884\) −373.392 + 215.578i −0.422389 + 0.243866i
\(885\) 1223.78 + 995.921i 1.38280 + 1.12533i
\(886\) 335.783 581.593i 0.378987 0.656426i
\(887\) 548.437 + 316.640i 0.618306 + 0.356979i 0.776209 0.630476i \(-0.217140\pi\)
−0.157903 + 0.987455i \(0.550473\pi\)
\(888\) −256.855 674.013i −0.289252 0.759023i
\(889\) 0 0
\(890\) 966.821i 1.08632i
\(891\) 570.041 + 1314.50i 0.639777 + 1.47531i
\(892\) 1193.51 1.33801
\(893\) 111.651 64.4615i 0.125029 0.0721853i
\(894\) 1045.71 398.505i 1.16970 0.445755i
\(895\) 222.323 385.075i 0.248406 0.430251i
\(896\) 0 0
\(897\) −77.6955 + 95.4716i −0.0866171 + 0.106434i
\(898\) 417.524 + 723.172i 0.464949 + 0.805314i
\(899\) 1364.97i 1.51832i
\(900\) 241.006 214.896i 0.267785 0.238773i
\(901\) 622.887 0.691328
\(902\) 1586.22 915.805i 1.75856 1.01531i
\(903\) 0 0
\(904\) 300.084 519.761i 0.331951 0.574957i
\(905\) 589.108 + 340.122i 0.650948 + 0.375825i
\(906\) −1435.21 230.883i −1.58411 0.254838i
\(907\) −560.854 971.427i −0.618361 1.07103i −0.989785 0.142570i \(-0.954464\pi\)
0.371424 0.928464i \(-0.378870\pi\)
\(908\) 1294.56i 1.42572i
\(909\) −48.8813 + 147.995i −0.0537748 + 0.162811i
\(910\) 0 0
\(911\) −770.852 + 445.052i −0.846160 + 0.488531i −0.859353 0.511382i \(-0.829134\pi\)
0.0131931 + 0.999913i \(0.495800\pi\)
\(912\) 13.0627 + 10.6305i 0.0143231 + 0.0116563i
\(913\) 139.838 242.207i 0.153163 0.265287i
\(914\) −445.099 256.978i −0.486979 0.281158i
\(915\) −436.034 1144.19i −0.476540 1.25048i
\(916\) 253.332 + 438.784i 0.276563 + 0.479021i
\(917\) 0 0
\(918\) −1439.19 + 64.9291i −1.56775 + 0.0707289i
\(919\) −1135.91 −1.23602 −0.618012 0.786168i \(-0.712062\pi\)
−0.618012 + 0.786168i \(0.712062\pi\)
\(920\) 371.873 214.701i 0.404210 0.233371i
\(921\) −1085.72 + 413.752i −1.17885 + 0.449242i
\(922\) 329.251 570.280i 0.357105 0.618525i
\(923\) −70.6391 40.7835i −0.0765321 0.0441858i
\(924\) 0 0
\(925\) −87.5408 151.625i −0.0946387 0.163919i
\(926\) 2457.03i 2.65338i
\(927\) 50.4657 + 243.217i 0.0544398 + 0.262370i
\(928\) −1527.12 −1.64560
\(929\) 622.843 359.598i 0.670444 0.387081i −0.125801 0.992056i \(-0.540150\pi\)
0.796245 + 0.604974i \(0.206817\pi\)
\(930\) 251.756 1564.95i 0.270706 1.68275i
\(931\) 0 0
\(932\) −1805.12 1042.18i −1.93682 1.11822i
\(933\) 299.441 + 48.1715i 0.320944 + 0.0516307i
\(934\) −859.925 1489.43i −0.920691 1.59468i
\(935\) 1619.99i 1.73261i
\(936\) 276.855 57.4454i 0.295786 0.0613733i
\(937\) 1522.34 1.62470 0.812348 0.583172i \(-0.198189\pi\)
0.812348 + 0.583172i \(0.198189\pi\)
\(938\) 0 0
\(939\) −848.815 690.772i −0.903957 0.735646i
\(940\) 290.689 503.488i 0.309243 0.535625i
\(941\) −886.384 511.754i −0.941960 0.543841i −0.0513858 0.998679i \(-0.516364\pi\)
−0.890574 + 0.454838i \(0.849697\pi\)
\(942\) −943.782 2476.57i −1.00189 2.62906i
\(943\) 161.695 + 280.063i 0.171468 + 0.296992i
\(944\) 68.0487i 0.0720855i
\(945\) 0 0
\(946\) −382.316 −0.404139
\(947\) −1361.76 + 786.215i −1.43798 + 0.830217i −0.997709 0.0676499i \(-0.978450\pi\)
−0.440268 + 0.897866i \(0.645117\pi\)
\(948\) 2488.34 948.267i 2.62483 1.00028i
\(949\) 46.8406 81.1303i 0.0493578 0.0854903i
\(950\) −122.891 70.9512i −0.129359 0.0746855i
\(951\) 62.7750 77.1374i 0.0660095 0.0811119i
\(952\) 0 0
\(953\) 1342.92i 1.40915i −0.709629 0.704576i \(-0.751137\pi\)
0.709629 0.704576i \(-0.248863\pi\)
\(954\) −1036.68 342.406i −1.08667 0.358916i
\(955\) 1966.91 2.05959
\(956\) −1348.06 + 778.301i −1.41010 + 0.814122i
\(957\) −388.359 + 2414.10i −0.405809 + 2.52257i
\(958\) 974.348 1687.62i 1.01706 1.76161i
\(959\) 0 0
\(960\) 1703.94 + 274.115i 1.77493 + 0.285536i
\(961\) 41.7250 + 72.2699i 0.0434183 + 0.0752028i
\(962\) 409.757i 0.425943i
\(963\) 733.741 + 822.894i 0.761933 + 0.854511i
\(964\) 181.134 0.187899
\(965\) −190.034 + 109.716i −0.196927 + 0.113696i
\(966\) 0 0
\(967\) −867.804 + 1503.08i −0.897418 + 1.55437i −0.0666355 + 0.997777i \(0.521226\pi\)
−0.830783 + 0.556597i \(0.812107\pi\)
\(968\) −1281.05 739.614i −1.32340 0.764064i
\(969\) 138.669 + 363.879i 0.143105 + 0.375521i
\(970\) 1536.00 + 2660.43i 1.58350 + 2.74271i
\(971\) 50.6306i 0.0521427i −0.999660 0.0260714i \(-0.991700\pi\)
0.999660 0.0260714i \(-0.00829971\pi\)
\(972\) 1495.20 + 420.133i 1.53827 + 0.432236i
\(973\) 0 0
\(974\) 436.071 251.766i 0.447712 0.258486i
\(975\) 64.1340 24.4404i 0.0657784 0.0250671i
\(976\) 26.4045 45.7340i 0.0270538 0.0468586i
\(977\) −506.717 292.553i −0.518646 0.299440i 0.217734 0.976008i \(-0.430133\pi\)
−0.736381 + 0.676568i \(0.763467\pi\)
\(978\) −1359.11 + 1670.06i −1.38968 + 1.70763i
\(979\) 479.423 + 830.386i 0.489707 + 0.848198i
\(980\) 0 0
\(981\) 229.367 204.517i 0.233810 0.208479i
\(982\) −1291.26 −1.31493
\(983\) 839.089 484.448i 0.853600 0.492826i −0.00826378 0.999966i \(-0.502630\pi\)
0.861864 + 0.507140i \(0.169297\pi\)
\(984\) 117.987 733.427i 0.119906 0.745353i
\(985\) −361.397 + 625.957i −0.366900 + 0.635489i
\(986\) −2129.18 1229.28i −2.15941 1.24674i
\(987\) 0 0
\(988\) −102.133 176.900i −0.103374 0.179048i
\(989\) 67.5017i 0.0682525i
\(990\) 890.519 2696.17i 0.899514 2.72340i
\(991\) 208.897 0.210794 0.105397 0.994430i \(-0.466389\pi\)
0.105397 + 0.994430i \(0.466389\pi\)
\(992\) 850.263 490.900i 0.857120 0.494859i
\(993\) −210.598 171.386i −0.212083 0.172594i
\(994\) 0 0
\(995\) −1039.99 600.439i −1.04522 0.603457i
\(996\) −107.957 283.289i −0.108391 0.284427i
\(997\) 76.0851 + 131.783i 0.0763140 + 0.132180i 0.901657 0.432452i \(-0.142352\pi\)
−0.825343 + 0.564632i \(0.809018\pi\)
\(998\) 394.206i 0.394996i
\(999\) 387.762 747.531i 0.388151 0.748280i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.3.r.f.50.10 22
7.2 even 3 441.3.n.f.410.2 22
7.3 odd 6 63.3.j.b.23.10 yes 22
7.4 even 3 441.3.j.f.275.10 22
7.5 odd 6 63.3.n.b.32.2 yes 22
7.6 odd 2 441.3.r.g.50.10 22
9.2 odd 6 inner 441.3.r.f.344.10 22
21.5 even 6 189.3.n.b.179.10 22
21.17 even 6 189.3.j.b.44.2 22
63.2 odd 6 441.3.j.f.263.2 22
63.11 odd 6 441.3.n.f.128.2 22
63.20 even 6 441.3.r.g.344.10 22
63.38 even 6 63.3.n.b.2.2 yes 22
63.47 even 6 63.3.j.b.11.2 22
63.52 odd 6 189.3.n.b.170.10 22
63.61 odd 6 189.3.j.b.116.10 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.j.b.11.2 22 63.47 even 6
63.3.j.b.23.10 yes 22 7.3 odd 6
63.3.n.b.2.2 yes 22 63.38 even 6
63.3.n.b.32.2 yes 22 7.5 odd 6
189.3.j.b.44.2 22 21.17 even 6
189.3.j.b.116.10 22 63.61 odd 6
189.3.n.b.170.10 22 63.52 odd 6
189.3.n.b.179.10 22 21.5 even 6
441.3.j.f.263.2 22 63.2 odd 6
441.3.j.f.275.10 22 7.4 even 3
441.3.n.f.128.2 22 63.11 odd 6
441.3.n.f.410.2 22 7.2 even 3
441.3.r.f.50.10 22 1.1 even 1 trivial
441.3.r.f.344.10 22 9.2 odd 6 inner
441.3.r.g.50.10 22 7.6 odd 2
441.3.r.g.344.10 22 63.20 even 6