Properties

Label 63.3.j.b
Level $63$
Weight $3$
Character orbit 63.j
Analytic conductor $1.717$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,3,Mod(11,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.11");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 63.j (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.71662566547\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 22 q - 19 q^{3} - 24 q^{4} + 12 q^{5} - 8 q^{6} - 37 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 22 q - 19 q^{3} - 24 q^{4} + 12 q^{5} - 8 q^{6} - 37 q^{9} + 25 q^{10} + 24 q^{11} + 40 q^{12} - 18 q^{13} - 60 q^{14} + 53 q^{15} - 24 q^{16} - 6 q^{17} + 40 q^{18} + 3 q^{19} - 39 q^{20} - 11 q^{21} - 59 q^{22} + 81 q^{23} + 126 q^{24} + 57 q^{25} + 3 q^{26} - 97 q^{27} + 34 q^{28} - 63 q^{29} - 38 q^{30} + 58 q^{31} - 4 q^{33} - 99 q^{34} + 27 q^{35} + 76 q^{36} - 20 q^{37} - 48 q^{38} - 76 q^{39} - 105 q^{40} - 51 q^{41} + 68 q^{42} + 65 q^{43} - 54 q^{44} - 214 q^{45} + 75 q^{46} - 113 q^{48} + 4 q^{49} + 63 q^{50} + 141 q^{51} - 46 q^{52} + 63 q^{53} + 433 q^{54} - 100 q^{55} + 192 q^{56} + 224 q^{57} + 40 q^{58} - 482 q^{60} - 156 q^{61} + 19 q^{63} + 106 q^{64} + 61 q^{66} + 264 q^{67} + 27 q^{68} - 297 q^{69} + 236 q^{70} - 222 q^{72} + q^{73} + 342 q^{74} - 296 q^{75} + 233 q^{76} - 531 q^{77} - 440 q^{78} - 280 q^{79} - 96 q^{80} - 169 q^{81} - 157 q^{82} + 255 q^{83} - 13 q^{84} + 102 q^{85} + 504 q^{86} + 704 q^{87} + 408 q^{88} + 720 q^{89} + 418 q^{90} - 70 q^{91} - 1239 q^{92} - 36 q^{93} - 522 q^{94} - 397 q^{96} + 178 q^{97} - 483 q^{98} - 103 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1 3.69072i −1.07647 2.80021i −9.62138 5.05096 + 2.91617i −10.3348 + 3.97296i 3.74467 5.91417i 20.7469i −6.68241 + 6.02872i 10.7628 18.6416i
11.2 3.22356i −2.32685 + 1.89361i −6.39137 −4.79167 2.76647i 6.10417 + 7.50076i −6.99696 + 0.206413i 7.70873i 1.82848 8.81230i −8.91790 + 15.4463i
11.3 2.41355i 1.94613 + 2.28311i −1.82523 5.93347 + 3.42569i 5.51041 4.69707i −6.55070 2.46747i 5.24892i −1.42519 + 8.88644i 8.26808 14.3207i
11.4 1.46555i 0.993737 2.83063i 1.85217 0.998268 + 0.576350i −4.14843 1.45637i −4.05935 + 5.70277i 8.57663i −7.02497 5.62581i 0.844669 1.46301i
11.5 1.29088i −2.37377 + 1.83445i 2.33363 4.18841 + 2.41818i 2.36806 + 3.06425i 6.74202 1.88284i 8.17595i 2.26955 8.70914i 3.12158 5.40673i
11.6 0.513687i −2.25960 1.97337i 3.73613 −6.08350 3.51231i −1.01370 + 1.16073i 1.23968 6.88935i 3.97395i 1.21160 + 8.91807i −1.80423 + 3.12502i
11.7 0.0767494i 0.891547 + 2.86446i 3.99411 −3.53076 2.03848i −0.219846 + 0.0684257i 2.97142 + 6.33803i 0.613543i −7.41029 + 5.10760i 0.156452 0.270983i
11.8 1.28539i −2.79035 1.10178i 2.34778 6.82011 + 3.93759i 1.41622 3.58669i −6.26023 + 3.13201i 8.15936i 6.57215 + 6.14872i −5.06133 + 8.76649i
11.9 2.15495i 0.867675 2.87178i −0.643801 1.62693 + 0.939308i 6.18854 + 1.86979i 6.99124 + 0.350157i 7.23243i −7.49428 4.98355i −2.02416 + 3.50595i
11.10 2.74500i −0.432548 + 2.96865i −3.53503 2.32531 + 1.34252i −8.14895 1.18734i 0.122457 6.99893i 1.27635i −8.62581 2.56817i −3.68521 + 6.38297i
11.11 2.87176i −2.93949 + 0.599520i −4.24700 −6.53753 3.77444i −1.72168 8.44150i 2.05575 + 6.69133i 0.709334i 8.28115 3.52456i 10.8393 18.7742i
23.1 2.87176i −2.93949 0.599520i −4.24700 −6.53753 + 3.77444i −1.72168 + 8.44150i 2.05575 6.69133i 0.709334i 8.28115 + 3.52456i 10.8393 + 18.7742i
23.2 2.74500i −0.432548 2.96865i −3.53503 2.32531 1.34252i −8.14895 + 1.18734i 0.122457 + 6.99893i 1.27635i −8.62581 + 2.56817i −3.68521 6.38297i
23.3 2.15495i 0.867675 + 2.87178i −0.643801 1.62693 0.939308i 6.18854 1.86979i 6.99124 0.350157i 7.23243i −7.49428 + 4.98355i −2.02416 3.50595i
23.4 1.28539i −2.79035 + 1.10178i 2.34778 6.82011 3.93759i 1.41622 + 3.58669i −6.26023 3.13201i 8.15936i 6.57215 6.14872i −5.06133 8.76649i
23.5 0.0767494i 0.891547 2.86446i 3.99411 −3.53076 + 2.03848i −0.219846 0.0684257i 2.97142 6.33803i 0.613543i −7.41029 5.10760i 0.156452 + 0.270983i
23.6 0.513687i −2.25960 + 1.97337i 3.73613 −6.08350 + 3.51231i −1.01370 1.16073i 1.23968 + 6.88935i 3.97395i 1.21160 8.91807i −1.80423 3.12502i
23.7 1.29088i −2.37377 1.83445i 2.33363 4.18841 2.41818i 2.36806 3.06425i 6.74202 + 1.88284i 8.17595i 2.26955 + 8.70914i 3.12158 + 5.40673i
23.8 1.46555i 0.993737 + 2.83063i 1.85217 0.998268 0.576350i −4.14843 + 1.45637i −4.05935 5.70277i 8.57663i −7.02497 + 5.62581i 0.844669 + 1.46301i
23.9 2.41355i 1.94613 2.28311i −1.82523 5.93347 3.42569i 5.51041 + 4.69707i −6.55070 + 2.46747i 5.24892i −1.42519 8.88644i 8.26808 + 14.3207i
See all 22 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.11
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.j odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.3.j.b 22
3.b odd 2 1 189.3.j.b 22
7.b odd 2 1 441.3.j.f 22
7.c even 3 1 63.3.n.b yes 22
7.c even 3 1 441.3.r.g 22
7.d odd 6 1 441.3.n.f 22
7.d odd 6 1 441.3.r.f 22
9.c even 3 1 189.3.n.b 22
9.d odd 6 1 63.3.n.b yes 22
21.h odd 6 1 189.3.n.b 22
63.h even 3 1 189.3.j.b 22
63.i even 6 1 441.3.j.f 22
63.j odd 6 1 inner 63.3.j.b 22
63.n odd 6 1 441.3.r.g 22
63.o even 6 1 441.3.n.f 22
63.s even 6 1 441.3.r.f 22
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.3.j.b 22 1.a even 1 1 trivial
63.3.j.b 22 63.j odd 6 1 inner
63.3.n.b yes 22 7.c even 3 1
63.3.n.b yes 22 9.d odd 6 1
189.3.j.b 22 3.b odd 2 1
189.3.j.b 22 63.h even 3 1
189.3.n.b 22 9.c even 3 1
189.3.n.b 22 21.h odd 6 1
441.3.j.f 22 7.b odd 2 1
441.3.j.f 22 63.i even 6 1
441.3.n.f 22 7.d odd 6 1
441.3.n.f 22 63.o even 6 1
441.3.r.f 22 7.d odd 6 1
441.3.r.f 22 63.s even 6 1
441.3.r.g 22 7.c even 3 1
441.3.r.g 22 63.n odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{22} + 56 T_{2}^{20} + 1326 T_{2}^{18} + 17369 T_{2}^{16} + 138193 T_{2}^{14} + 690216 T_{2}^{12} + \cdots + 2187 \) acting on \(S_{3}^{\mathrm{new}}(63, [\chi])\). Copy content Toggle raw display