Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [63,3,Mod(11,63)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(63, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([1, 4]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("63.11");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 63.j (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.71662566547\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | − | 3.69072i | −1.07647 | − | 2.80021i | −9.62138 | 5.05096 | + | 2.91617i | −10.3348 | + | 3.97296i | 3.74467 | − | 5.91417i | 20.7469i | −6.68241 | + | 6.02872i | 10.7628 | − | 18.6416i | |||||
11.2 | − | 3.22356i | −2.32685 | + | 1.89361i | −6.39137 | −4.79167 | − | 2.76647i | 6.10417 | + | 7.50076i | −6.99696 | + | 0.206413i | 7.70873i | 1.82848 | − | 8.81230i | −8.91790 | + | 15.4463i | |||||
11.3 | − | 2.41355i | 1.94613 | + | 2.28311i | −1.82523 | 5.93347 | + | 3.42569i | 5.51041 | − | 4.69707i | −6.55070 | − | 2.46747i | − | 5.24892i | −1.42519 | + | 8.88644i | 8.26808 | − | 14.3207i | ||||
11.4 | − | 1.46555i | 0.993737 | − | 2.83063i | 1.85217 | 0.998268 | + | 0.576350i | −4.14843 | − | 1.45637i | −4.05935 | + | 5.70277i | − | 8.57663i | −7.02497 | − | 5.62581i | 0.844669 | − | 1.46301i | ||||
11.5 | − | 1.29088i | −2.37377 | + | 1.83445i | 2.33363 | 4.18841 | + | 2.41818i | 2.36806 | + | 3.06425i | 6.74202 | − | 1.88284i | − | 8.17595i | 2.26955 | − | 8.70914i | 3.12158 | − | 5.40673i | ||||
11.6 | − | 0.513687i | −2.25960 | − | 1.97337i | 3.73613 | −6.08350 | − | 3.51231i | −1.01370 | + | 1.16073i | 1.23968 | − | 6.88935i | − | 3.97395i | 1.21160 | + | 8.91807i | −1.80423 | + | 3.12502i | ||||
11.7 | 0.0767494i | 0.891547 | + | 2.86446i | 3.99411 | −3.53076 | − | 2.03848i | −0.219846 | + | 0.0684257i | 2.97142 | + | 6.33803i | 0.613543i | −7.41029 | + | 5.10760i | 0.156452 | − | 0.270983i | ||||||
11.8 | 1.28539i | −2.79035 | − | 1.10178i | 2.34778 | 6.82011 | + | 3.93759i | 1.41622 | − | 3.58669i | −6.26023 | + | 3.13201i | 8.15936i | 6.57215 | + | 6.14872i | −5.06133 | + | 8.76649i | ||||||
11.9 | 2.15495i | 0.867675 | − | 2.87178i | −0.643801 | 1.62693 | + | 0.939308i | 6.18854 | + | 1.86979i | 6.99124 | + | 0.350157i | 7.23243i | −7.49428 | − | 4.98355i | −2.02416 | + | 3.50595i | ||||||
11.10 | 2.74500i | −0.432548 | + | 2.96865i | −3.53503 | 2.32531 | + | 1.34252i | −8.14895 | − | 1.18734i | 0.122457 | − | 6.99893i | 1.27635i | −8.62581 | − | 2.56817i | −3.68521 | + | 6.38297i | ||||||
11.11 | 2.87176i | −2.93949 | + | 0.599520i | −4.24700 | −6.53753 | − | 3.77444i | −1.72168 | − | 8.44150i | 2.05575 | + | 6.69133i | − | 0.709334i | 8.28115 | − | 3.52456i | 10.8393 | − | 18.7742i | |||||
23.1 | − | 2.87176i | −2.93949 | − | 0.599520i | −4.24700 | −6.53753 | + | 3.77444i | −1.72168 | + | 8.44150i | 2.05575 | − | 6.69133i | 0.709334i | 8.28115 | + | 3.52456i | 10.8393 | + | 18.7742i | |||||
23.2 | − | 2.74500i | −0.432548 | − | 2.96865i | −3.53503 | 2.32531 | − | 1.34252i | −8.14895 | + | 1.18734i | 0.122457 | + | 6.99893i | − | 1.27635i | −8.62581 | + | 2.56817i | −3.68521 | − | 6.38297i | ||||
23.3 | − | 2.15495i | 0.867675 | + | 2.87178i | −0.643801 | 1.62693 | − | 0.939308i | 6.18854 | − | 1.86979i | 6.99124 | − | 0.350157i | − | 7.23243i | −7.49428 | + | 4.98355i | −2.02416 | − | 3.50595i | ||||
23.4 | − | 1.28539i | −2.79035 | + | 1.10178i | 2.34778 | 6.82011 | − | 3.93759i | 1.41622 | + | 3.58669i | −6.26023 | − | 3.13201i | − | 8.15936i | 6.57215 | − | 6.14872i | −5.06133 | − | 8.76649i | ||||
23.5 | − | 0.0767494i | 0.891547 | − | 2.86446i | 3.99411 | −3.53076 | + | 2.03848i | −0.219846 | − | 0.0684257i | 2.97142 | − | 6.33803i | − | 0.613543i | −7.41029 | − | 5.10760i | 0.156452 | + | 0.270983i | ||||
23.6 | 0.513687i | −2.25960 | + | 1.97337i | 3.73613 | −6.08350 | + | 3.51231i | −1.01370 | − | 1.16073i | 1.23968 | + | 6.88935i | 3.97395i | 1.21160 | − | 8.91807i | −1.80423 | − | 3.12502i | ||||||
23.7 | 1.29088i | −2.37377 | − | 1.83445i | 2.33363 | 4.18841 | − | 2.41818i | 2.36806 | − | 3.06425i | 6.74202 | + | 1.88284i | 8.17595i | 2.26955 | + | 8.70914i | 3.12158 | + | 5.40673i | ||||||
23.8 | 1.46555i | 0.993737 | + | 2.83063i | 1.85217 | 0.998268 | − | 0.576350i | −4.14843 | + | 1.45637i | −4.05935 | − | 5.70277i | 8.57663i | −7.02497 | + | 5.62581i | 0.844669 | + | 1.46301i | ||||||
23.9 | 2.41355i | 1.94613 | − | 2.28311i | −1.82523 | 5.93347 | − | 3.42569i | 5.51041 | + | 4.69707i | −6.55070 | + | 2.46747i | 5.24892i | −1.42519 | − | 8.88644i | 8.26808 | + | 14.3207i | ||||||
See all 22 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.j | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 63.3.j.b | ✓ | 22 |
3.b | odd | 2 | 1 | 189.3.j.b | 22 | ||
7.b | odd | 2 | 1 | 441.3.j.f | 22 | ||
7.c | even | 3 | 1 | 63.3.n.b | yes | 22 | |
7.c | even | 3 | 1 | 441.3.r.g | 22 | ||
7.d | odd | 6 | 1 | 441.3.n.f | 22 | ||
7.d | odd | 6 | 1 | 441.3.r.f | 22 | ||
9.c | even | 3 | 1 | 189.3.n.b | 22 | ||
9.d | odd | 6 | 1 | 63.3.n.b | yes | 22 | |
21.h | odd | 6 | 1 | 189.3.n.b | 22 | ||
63.h | even | 3 | 1 | 189.3.j.b | 22 | ||
63.i | even | 6 | 1 | 441.3.j.f | 22 | ||
63.j | odd | 6 | 1 | inner | 63.3.j.b | ✓ | 22 |
63.n | odd | 6 | 1 | 441.3.r.g | 22 | ||
63.o | even | 6 | 1 | 441.3.n.f | 22 | ||
63.s | even | 6 | 1 | 441.3.r.f | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.3.j.b | ✓ | 22 | 1.a | even | 1 | 1 | trivial |
63.3.j.b | ✓ | 22 | 63.j | odd | 6 | 1 | inner |
63.3.n.b | yes | 22 | 7.c | even | 3 | 1 | |
63.3.n.b | yes | 22 | 9.d | odd | 6 | 1 | |
189.3.j.b | 22 | 3.b | odd | 2 | 1 | ||
189.3.j.b | 22 | 63.h | even | 3 | 1 | ||
189.3.n.b | 22 | 9.c | even | 3 | 1 | ||
189.3.n.b | 22 | 21.h | odd | 6 | 1 | ||
441.3.j.f | 22 | 7.b | odd | 2 | 1 | ||
441.3.j.f | 22 | 63.i | even | 6 | 1 | ||
441.3.n.f | 22 | 7.d | odd | 6 | 1 | ||
441.3.n.f | 22 | 63.o | even | 6 | 1 | ||
441.3.r.f | 22 | 7.d | odd | 6 | 1 | ||
441.3.r.f | 22 | 63.s | even | 6 | 1 | ||
441.3.r.g | 22 | 7.c | even | 3 | 1 | ||
441.3.r.g | 22 | 63.n | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{22} + 56 T_{2}^{20} + 1326 T_{2}^{18} + 17369 T_{2}^{16} + 138193 T_{2}^{14} + 690216 T_{2}^{12} + \cdots + 2187 \) acting on \(S_{3}^{\mathrm{new}}(63, [\chi])\).