Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [441,3,Mod(50,441)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("441.50");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 441.r (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(12.0163796583\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 63) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50.1 | −2.48702 | + | 1.43588i | 1.98894 | − | 2.24591i | 2.12350 | − | 3.67801i | 6.53753 | + | 3.77444i | −1.72168 | + | 8.44150i | 0 | 0.709334i | −1.08822 | − | 8.93397i | −21.6786 | ||||||
50.2 | −2.37724 | + | 1.37250i | 2.78720 | + | 1.10973i | 1.76751 | − | 3.06142i | −2.32531 | − | 1.34252i | −8.14895 | + | 1.18734i | 0 | − | 1.27635i | 6.53700 | + | 6.18608i | 7.37042 | |||||
50.3 | −1.86624 | + | 1.07747i | −2.92087 | − | 0.684463i | 0.321900 | − | 0.557548i | −1.62693 | − | 0.939308i | 6.18854 | − | 1.86979i | 0 | − | 7.23243i | 8.06302 | + | 3.99846i | 4.04832 | |||||
50.4 | −1.11318 | + | 0.642694i | 0.441006 | − | 2.96741i | −1.17389 | + | 2.03324i | −6.82011 | − | 3.93759i | 1.41622 | + | 3.58669i | 0 | − | 8.15936i | −8.61103 | − | 2.61729i | 10.1227 | |||||
50.5 | −0.0664669 | + | 0.0383747i | 2.03492 | + | 2.20433i | −1.99705 | + | 3.45900i | 3.53076 | + | 2.03848i | −0.219846 | − | 0.0684257i | 0 | − | 0.613543i | −0.718171 | + | 8.97130i | −0.312905 | |||||
50.6 | 0.444866 | − | 0.256844i | −0.579189 | − | 2.94356i | −1.86806 | + | 3.23558i | 6.08350 | + | 3.51231i | −1.01370 | − | 1.16073i | 0 | 3.97395i | −8.32908 | + | 3.40976i | 3.60846 | ||||||
50.7 | 1.11793 | − | 0.645440i | 2.77557 | − | 1.13852i | −1.16681 | + | 2.02098i | −4.18841 | − | 2.41818i | 2.36806 | − | 3.06425i | 0 | 8.17595i | 6.40756 | − | 6.32006i | −6.24316 | ||||||
50.8 | 1.26920 | − | 0.732774i | −2.94827 | − | 0.554715i | −0.926086 | + | 1.60403i | −0.998268 | − | 0.576350i | −4.14843 | + | 1.45637i | 0 | 8.57663i | 8.38458 | + | 3.27090i | −1.68934 | ||||||
50.9 | 2.09020 | − | 1.20678i | 1.00417 | + | 2.82695i | 0.912615 | − | 1.58070i | −5.93347 | − | 3.42569i | 5.51041 | + | 4.69707i | 0 | 5.24892i | −6.98329 | + | 5.67747i | −16.5362 | ||||||
50.10 | 2.79169 | − | 1.61178i | 2.80334 | − | 1.06831i | 3.19568 | − | 5.53509i | 4.79167 | + | 2.76647i | 6.10417 | − | 7.50076i | 0 | − | 7.70873i | 6.71743 | − | 5.98966i | 17.8358 | |||||
50.11 | 3.19625 | − | 1.84536i | −1.88682 | − | 2.33236i | 4.81069 | − | 8.33236i | −5.05096 | − | 2.91617i | −10.3348 | − | 3.97296i | 0 | − | 20.7469i | −1.87982 | + | 8.80149i | −21.5255 | |||||
344.1 | −2.48702 | − | 1.43588i | 1.98894 | + | 2.24591i | 2.12350 | + | 3.67801i | 6.53753 | − | 3.77444i | −1.72168 | − | 8.44150i | 0 | − | 0.709334i | −1.08822 | + | 8.93397i | −21.6786 | |||||
344.2 | −2.37724 | − | 1.37250i | 2.78720 | − | 1.10973i | 1.76751 | + | 3.06142i | −2.32531 | + | 1.34252i | −8.14895 | − | 1.18734i | 0 | 1.27635i | 6.53700 | − | 6.18608i | 7.37042 | ||||||
344.3 | −1.86624 | − | 1.07747i | −2.92087 | + | 0.684463i | 0.321900 | + | 0.557548i | −1.62693 | + | 0.939308i | 6.18854 | + | 1.86979i | 0 | 7.23243i | 8.06302 | − | 3.99846i | 4.04832 | ||||||
344.4 | −1.11318 | − | 0.642694i | 0.441006 | + | 2.96741i | −1.17389 | − | 2.03324i | −6.82011 | + | 3.93759i | 1.41622 | − | 3.58669i | 0 | 8.15936i | −8.61103 | + | 2.61729i | 10.1227 | ||||||
344.5 | −0.0664669 | − | 0.0383747i | 2.03492 | − | 2.20433i | −1.99705 | − | 3.45900i | 3.53076 | − | 2.03848i | −0.219846 | + | 0.0684257i | 0 | 0.613543i | −0.718171 | − | 8.97130i | −0.312905 | ||||||
344.6 | 0.444866 | + | 0.256844i | −0.579189 | + | 2.94356i | −1.86806 | − | 3.23558i | 6.08350 | − | 3.51231i | −1.01370 | + | 1.16073i | 0 | − | 3.97395i | −8.32908 | − | 3.40976i | 3.60846 | |||||
344.7 | 1.11793 | + | 0.645440i | 2.77557 | + | 1.13852i | −1.16681 | − | 2.02098i | −4.18841 | + | 2.41818i | 2.36806 | + | 3.06425i | 0 | − | 8.17595i | 6.40756 | + | 6.32006i | −6.24316 | |||||
344.8 | 1.26920 | + | 0.732774i | −2.94827 | + | 0.554715i | −0.926086 | − | 1.60403i | −0.998268 | + | 0.576350i | −4.14843 | − | 1.45637i | 0 | − | 8.57663i | 8.38458 | − | 3.27090i | −1.68934 | |||||
344.9 | 2.09020 | + | 1.20678i | 1.00417 | − | 2.82695i | 0.912615 | + | 1.58070i | −5.93347 | + | 3.42569i | 5.51041 | − | 4.69707i | 0 | − | 5.24892i | −6.98329 | − | 5.67747i | −16.5362 | |||||
See all 22 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 441.3.r.g | 22 | |
7.b | odd | 2 | 1 | 441.3.r.f | 22 | ||
7.c | even | 3 | 1 | 63.3.j.b | ✓ | 22 | |
7.c | even | 3 | 1 | 63.3.n.b | yes | 22 | |
7.d | odd | 6 | 1 | 441.3.j.f | 22 | ||
7.d | odd | 6 | 1 | 441.3.n.f | 22 | ||
9.d | odd | 6 | 1 | inner | 441.3.r.g | 22 | |
21.h | odd | 6 | 1 | 189.3.j.b | 22 | ||
21.h | odd | 6 | 1 | 189.3.n.b | 22 | ||
63.g | even | 3 | 1 | 189.3.j.b | 22 | ||
63.h | even | 3 | 1 | 189.3.n.b | 22 | ||
63.i | even | 6 | 1 | 441.3.n.f | 22 | ||
63.j | odd | 6 | 1 | 63.3.n.b | yes | 22 | |
63.n | odd | 6 | 1 | 63.3.j.b | ✓ | 22 | |
63.o | even | 6 | 1 | 441.3.r.f | 22 | ||
63.s | even | 6 | 1 | 441.3.j.f | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.3.j.b | ✓ | 22 | 7.c | even | 3 | 1 | |
63.3.j.b | ✓ | 22 | 63.n | odd | 6 | 1 | |
63.3.n.b | yes | 22 | 7.c | even | 3 | 1 | |
63.3.n.b | yes | 22 | 63.j | odd | 6 | 1 | |
189.3.j.b | 22 | 21.h | odd | 6 | 1 | ||
189.3.j.b | 22 | 63.g | even | 3 | 1 | ||
189.3.n.b | 22 | 21.h | odd | 6 | 1 | ||
189.3.n.b | 22 | 63.h | even | 3 | 1 | ||
441.3.j.f | 22 | 7.d | odd | 6 | 1 | ||
441.3.j.f | 22 | 63.s | even | 6 | 1 | ||
441.3.n.f | 22 | 7.d | odd | 6 | 1 | ||
441.3.n.f | 22 | 63.i | even | 6 | 1 | ||
441.3.r.f | 22 | 7.b | odd | 2 | 1 | ||
441.3.r.f | 22 | 63.o | even | 6 | 1 | ||
441.3.r.g | 22 | 1.a | even | 1 | 1 | trivial | |
441.3.r.g | 22 | 9.d | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(441, [\chi])\):
\( T_{2}^{22} - 6 T_{2}^{21} - 10 T_{2}^{20} + 132 T_{2}^{19} + 63 T_{2}^{18} - 1884 T_{2}^{17} + \cdots + 2187 \) |
\( T_{5}^{22} + 12 T_{5}^{21} - 94 T_{5}^{20} - 1704 T_{5}^{19} + 6369 T_{5}^{18} + 161319 T_{5}^{17} + \cdots + 112049133289443 \) |