Properties

Label 16-63e8-1.1-c7e8-0-1
Degree $16$
Conductor $2.482\times 10^{14}$
Sign $1$
Analytic cond. $2.25032\times 10^{10}$
Root an. cond. $4.43624$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 206·4-s + 196·5-s + 154·7-s + 607·8-s − 196·10-s − 5.21e3·11-s − 7.58e3·13-s − 154·14-s + 2.89e4·16-s − 1.14e4·17-s + 6.91e4·19-s + 4.03e4·20-s + 5.21e3·22-s − 1.46e5·23-s + 1.72e5·25-s + 7.58e3·26-s + 3.17e4·28-s + 1.41e5·29-s + 2.88e5·31-s + 1.72e5·32-s + 1.14e4·34-s + 3.01e4·35-s + 4.48e5·37-s − 6.91e4·38-s + 1.18e5·40-s + 1.32e6·41-s + ⋯
L(s)  = 1  − 0.0883·2-s + 1.60·4-s + 0.701·5-s + 0.169·7-s + 0.419·8-s − 0.0619·10-s − 1.18·11-s − 0.957·13-s − 0.0149·14-s + 1.76·16-s − 0.564·17-s + 2.31·19-s + 1.12·20-s + 0.104·22-s − 2.50·23-s + 2.20·25-s + 0.0846·26-s + 0.273·28-s + 1.07·29-s + 1.74·31-s + 0.932·32-s + 0.0498·34-s + 0.118·35-s + 1.45·37-s − 0.204·38-s + 0.293·40-s + 3.00·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(8-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+7/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(3^{16} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(2.25032\times 10^{10}\)
Root analytic conductor: \(4.43624\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 3^{16} \cdot 7^{8} ,\ ( \ : [7/2]^{8} ),\ 1 )\)

Particular Values

\(L(4)\) \(\approx\) \(62.68054099\)
\(L(\frac12)\) \(\approx\) \(62.68054099\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 22 p T - 53948 p^{2} T^{2} + 44152 p^{4} T^{3} + 25832189 p^{6} T^{4} + 44152 p^{11} T^{5} - 53948 p^{16} T^{6} - 22 p^{22} T^{7} + p^{28} T^{8} \)
good2 \( 1 + T - 205 T^{2} - 509 p T^{3} + 1463 p^{3} T^{4} + 18021 p^{3} T^{5} + 26303 p^{5} T^{6} - 261523 p^{5} T^{7} - 1566247 p^{6} T^{8} - 261523 p^{12} T^{9} + 26303 p^{19} T^{10} + 18021 p^{24} T^{11} + 1463 p^{31} T^{12} - 509 p^{36} T^{13} - 205 p^{42} T^{14} + p^{49} T^{15} + p^{56} T^{16} \)
5 \( 1 - 196 T - 133927 T^{2} + 582836 p^{3} T^{3} + 176610889 p^{2} T^{4} - 7538169316992 T^{5} + 1573062976649806 T^{6} + 69013603051990576 p T^{7} - 7354408837532411194 p^{2} T^{8} + 69013603051990576 p^{8} T^{9} + 1573062976649806 p^{14} T^{10} - 7538169316992 p^{21} T^{11} + 176610889 p^{30} T^{12} + 582836 p^{38} T^{13} - 133927 p^{42} T^{14} - 196 p^{49} T^{15} + p^{56} T^{16} \)
11 \( 1 + 5210 T - 13550341 T^{2} + 87815127118 T^{3} + 813472841934301 T^{4} - 1670782125020401848 T^{5} + \)\(73\!\cdots\!98\)\( T^{6} + \)\(52\!\cdots\!28\)\( T^{7} - \)\(17\!\cdots\!38\)\( T^{8} + \)\(52\!\cdots\!28\)\( p^{7} T^{9} + \)\(73\!\cdots\!98\)\( p^{14} T^{10} - 1670782125020401848 p^{21} T^{11} + 813472841934301 p^{28} T^{12} + 87815127118 p^{35} T^{13} - 13550341 p^{42} T^{14} + 5210 p^{49} T^{15} + p^{56} T^{16} \)
13 \( ( 1 + 3794 T + 102976741 T^{2} + 172660567546 T^{3} + 8327318022182528 T^{4} + 172660567546 p^{7} T^{5} + 102976741 p^{14} T^{6} + 3794 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
17 \( 1 + 11436 T - 1114853444 T^{2} - 158928045720 T^{3} + 809471792809409914 T^{4} - \)\(31\!\cdots\!92\)\( T^{5} - \)\(38\!\cdots\!60\)\( T^{6} + \)\(57\!\cdots\!52\)\( T^{7} + \)\(14\!\cdots\!59\)\( T^{8} + \)\(57\!\cdots\!52\)\( p^{7} T^{9} - \)\(38\!\cdots\!60\)\( p^{14} T^{10} - \)\(31\!\cdots\!92\)\( p^{21} T^{11} + 809471792809409914 p^{28} T^{12} - 158928045720 p^{35} T^{13} - 1114853444 p^{42} T^{14} + 11436 p^{49} T^{15} + p^{56} T^{16} \)
19 \( 1 - 69158 T + 1595596935 T^{2} - 18293280666090 T^{3} - 81905563961069391 T^{4} + \)\(37\!\cdots\!96\)\( T^{5} - \)\(13\!\cdots\!74\)\( T^{6} + \)\(11\!\cdots\!36\)\( p T^{7} - \)\(48\!\cdots\!98\)\( T^{8} + \)\(11\!\cdots\!36\)\( p^{8} T^{9} - \)\(13\!\cdots\!74\)\( p^{14} T^{10} + \)\(37\!\cdots\!96\)\( p^{21} T^{11} - 81905563961069391 p^{28} T^{12} - 18293280666090 p^{35} T^{13} + 1595596935 p^{42} T^{14} - 69158 p^{49} T^{15} + p^{56} T^{16} \)
23 \( 1 + 146220 T + 1817735620 T^{2} - 252982184818344 T^{3} + 44908344735632175994 T^{4} + \)\(35\!\cdots\!04\)\( T^{5} - \)\(53\!\cdots\!36\)\( T^{6} + \)\(30\!\cdots\!72\)\( T^{7} + \)\(10\!\cdots\!27\)\( T^{8} + \)\(30\!\cdots\!72\)\( p^{7} T^{9} - \)\(53\!\cdots\!36\)\( p^{14} T^{10} + \)\(35\!\cdots\!04\)\( p^{21} T^{11} + 44908344735632175994 p^{28} T^{12} - 252982184818344 p^{35} T^{13} + 1817735620 p^{42} T^{14} + 146220 p^{49} T^{15} + p^{56} T^{16} \)
29 \( ( 1 - 70664 T + 48199790963 T^{2} - 1247069390276928 T^{3} + \)\(10\!\cdots\!80\)\( T^{4} - 1247069390276928 p^{7} T^{5} + 48199790963 p^{14} T^{6} - 70664 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
31 \( 1 - 288618 T - 50722994584 T^{2} + 9961277652025592 T^{3} + \)\(50\!\cdots\!55\)\( T^{4} - \)\(54\!\cdots\!32\)\( T^{5} - \)\(18\!\cdots\!84\)\( T^{6} + \)\(15\!\cdots\!06\)\( T^{7} + \)\(73\!\cdots\!64\)\( T^{8} + \)\(15\!\cdots\!06\)\( p^{7} T^{9} - \)\(18\!\cdots\!84\)\( p^{14} T^{10} - \)\(54\!\cdots\!32\)\( p^{21} T^{11} + \)\(50\!\cdots\!55\)\( p^{28} T^{12} + 9961277652025592 p^{35} T^{13} - 50722994584 p^{42} T^{14} - 288618 p^{49} T^{15} + p^{56} T^{16} \)
37 \( 1 - 448902 T - 84053579929 T^{2} + 1683019295379758 T^{3} + \)\(60\!\cdots\!09\)\( p T^{4} + \)\(20\!\cdots\!36\)\( T^{5} - \)\(19\!\cdots\!30\)\( T^{6} + \)\(44\!\cdots\!04\)\( T^{7} + \)\(18\!\cdots\!26\)\( T^{8} + \)\(44\!\cdots\!04\)\( p^{7} T^{9} - \)\(19\!\cdots\!30\)\( p^{14} T^{10} + \)\(20\!\cdots\!36\)\( p^{21} T^{11} + \)\(60\!\cdots\!09\)\( p^{29} T^{12} + 1683019295379758 p^{35} T^{13} - 84053579929 p^{42} T^{14} - 448902 p^{49} T^{15} + p^{56} T^{16} \)
41 \( ( 1 - 663316 T + 871076913224 T^{2} - 384262293935086044 T^{3} + \)\(26\!\cdots\!26\)\( T^{4} - 384262293935086044 p^{7} T^{5} + 871076913224 p^{14} T^{6} - 663316 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
43 \( ( 1 - 554 T - 15077285 p T^{2} + 4664521444356754 T^{3} + \)\(13\!\cdots\!28\)\( T^{4} + 4664521444356754 p^{7} T^{5} - 15077285 p^{15} T^{6} - 554 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
47 \( 1 - 762180 T - 81239846636 T^{2} - 48896398946940456 T^{3} - \)\(68\!\cdots\!42\)\( T^{4} + \)\(24\!\cdots\!92\)\( T^{5} + \)\(83\!\cdots\!24\)\( T^{6} - \)\(15\!\cdots\!84\)\( T^{7} + \)\(57\!\cdots\!27\)\( T^{8} - \)\(15\!\cdots\!84\)\( p^{7} T^{9} + \)\(83\!\cdots\!24\)\( p^{14} T^{10} + \)\(24\!\cdots\!92\)\( p^{21} T^{11} - \)\(68\!\cdots\!42\)\( p^{28} T^{12} - 48896398946940456 p^{35} T^{13} - 81239846636 p^{42} T^{14} - 762180 p^{49} T^{15} + p^{56} T^{16} \)
53 \( 1 + 2761920 T + 1375852346317 T^{2} - 146941467225378768 T^{3} + \)\(39\!\cdots\!29\)\( T^{4} + \)\(32\!\cdots\!80\)\( T^{5} - \)\(47\!\cdots\!50\)\( T^{6} - \)\(27\!\cdots\!68\)\( T^{7} + \)\(36\!\cdots\!46\)\( T^{8} - \)\(27\!\cdots\!68\)\( p^{7} T^{9} - \)\(47\!\cdots\!50\)\( p^{14} T^{10} + \)\(32\!\cdots\!80\)\( p^{21} T^{11} + \)\(39\!\cdots\!29\)\( p^{28} T^{12} - 146941467225378768 p^{35} T^{13} + 1375852346317 p^{42} T^{14} + 2761920 p^{49} T^{15} + p^{56} T^{16} \)
59 \( 1 - 3410898 T + 868027314559 T^{2} + 5620025039380348794 T^{3} + \)\(49\!\cdots\!21\)\( T^{4} - \)\(16\!\cdots\!60\)\( T^{5} - \)\(14\!\cdots\!90\)\( T^{6} + \)\(35\!\cdots\!12\)\( T^{7} - \)\(15\!\cdots\!86\)\( T^{8} + \)\(35\!\cdots\!12\)\( p^{7} T^{9} - \)\(14\!\cdots\!90\)\( p^{14} T^{10} - \)\(16\!\cdots\!60\)\( p^{21} T^{11} + \)\(49\!\cdots\!21\)\( p^{28} T^{12} + 5620025039380348794 p^{35} T^{13} + 868027314559 p^{42} T^{14} - 3410898 p^{49} T^{15} + p^{56} T^{16} \)
61 \( 1 + 300892 T - 86494008900 p T^{2} + 5853008758722988296 T^{3} + \)\(12\!\cdots\!58\)\( T^{4} - \)\(28\!\cdots\!44\)\( T^{5} + \)\(20\!\cdots\!08\)\( T^{6} + \)\(60\!\cdots\!48\)\( T^{7} - \)\(94\!\cdots\!09\)\( T^{8} + \)\(60\!\cdots\!48\)\( p^{7} T^{9} + \)\(20\!\cdots\!08\)\( p^{14} T^{10} - \)\(28\!\cdots\!44\)\( p^{21} T^{11} + \)\(12\!\cdots\!58\)\( p^{28} T^{12} + 5853008758722988296 p^{35} T^{13} - 86494008900 p^{43} T^{14} + 300892 p^{49} T^{15} + p^{56} T^{16} \)
67 \( 1 - 4222478 T - 9315307834005 T^{2} + 34395757506970837806 T^{3} + \)\(16\!\cdots\!33\)\( T^{4} - \)\(33\!\cdots\!92\)\( T^{5} - \)\(12\!\cdots\!42\)\( T^{6} + \)\(46\!\cdots\!28\)\( T^{7} + \)\(10\!\cdots\!14\)\( T^{8} + \)\(46\!\cdots\!28\)\( p^{7} T^{9} - \)\(12\!\cdots\!42\)\( p^{14} T^{10} - \)\(33\!\cdots\!92\)\( p^{21} T^{11} + \)\(16\!\cdots\!33\)\( p^{28} T^{12} + 34395757506970837806 p^{35} T^{13} - 9315307834005 p^{42} T^{14} - 4222478 p^{49} T^{15} + p^{56} T^{16} \)
71 \( ( 1 - 380964 T + 17482423832204 T^{2} + 29051119312520145372 T^{3} + \)\(13\!\cdots\!74\)\( T^{4} + 29051119312520145372 p^{7} T^{5} + 17482423832204 p^{14} T^{6} - 380964 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
73 \( 1 - 451674 T - 6076887842341 T^{2} - 71774769404461846774 T^{3} - \)\(23\!\cdots\!35\)\( T^{4} + \)\(66\!\cdots\!80\)\( T^{5} + \)\(24\!\cdots\!22\)\( T^{6} - \)\(30\!\cdots\!80\)\( T^{7} - \)\(26\!\cdots\!38\)\( T^{8} - \)\(30\!\cdots\!80\)\( p^{7} T^{9} + \)\(24\!\cdots\!22\)\( p^{14} T^{10} + \)\(66\!\cdots\!80\)\( p^{21} T^{11} - \)\(23\!\cdots\!35\)\( p^{28} T^{12} - 71774769404461846774 p^{35} T^{13} - 6076887842341 p^{42} T^{14} - 451674 p^{49} T^{15} + p^{56} T^{16} \)
79 \( 1 - 12154822 T + 90170014725672 T^{2} - \)\(60\!\cdots\!68\)\( T^{3} + \)\(31\!\cdots\!03\)\( T^{4} - \)\(13\!\cdots\!68\)\( T^{5} + \)\(58\!\cdots\!24\)\( T^{6} - \)\(22\!\cdots\!34\)\( T^{7} + \)\(87\!\cdots\!36\)\( T^{8} - \)\(22\!\cdots\!34\)\( p^{7} T^{9} + \)\(58\!\cdots\!24\)\( p^{14} T^{10} - \)\(13\!\cdots\!68\)\( p^{21} T^{11} + \)\(31\!\cdots\!03\)\( p^{28} T^{12} - \)\(60\!\cdots\!68\)\( p^{35} T^{13} + 90170014725672 p^{42} T^{14} - 12154822 p^{49} T^{15} + p^{56} T^{16} \)
83 \( ( 1 - 12087978 T + 133280044237529 T^{2} - \)\(88\!\cdots\!42\)\( T^{3} + \)\(55\!\cdots\!20\)\( T^{4} - \)\(88\!\cdots\!42\)\( p^{7} T^{5} + 133280044237529 p^{14} T^{6} - 12087978 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
89 \( 1 - 4955752 T - 151120762805968 T^{2} + \)\(40\!\cdots\!16\)\( T^{3} + \)\(16\!\cdots\!34\)\( T^{4} - \)\(25\!\cdots\!20\)\( T^{5} - \)\(10\!\cdots\!16\)\( T^{6} + \)\(37\!\cdots\!48\)\( T^{7} + \)\(56\!\cdots\!87\)\( T^{8} + \)\(37\!\cdots\!48\)\( p^{7} T^{9} - \)\(10\!\cdots\!16\)\( p^{14} T^{10} - \)\(25\!\cdots\!20\)\( p^{21} T^{11} + \)\(16\!\cdots\!34\)\( p^{28} T^{12} + \)\(40\!\cdots\!16\)\( p^{35} T^{13} - 151120762805968 p^{42} T^{14} - 4955752 p^{49} T^{15} + p^{56} T^{16} \)
97 \( ( 1 + 22840614 T + 516597355973305 T^{2} + \)\(62\!\cdots\!78\)\( T^{3} + \)\(71\!\cdots\!48\)\( T^{4} + \)\(62\!\cdots\!78\)\( p^{7} T^{5} + 516597355973305 p^{14} T^{6} + 22840614 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.51042673816867756724809834414, −5.33910294454682421113255651658, −5.12364182304182091875626329614, −5.05306169097531726510222605106, −4.67664871950749303115676327737, −4.61714282873216234169376470025, −4.48779838242372634312711509977, −4.11723385155902819661124047961, −3.88249561024902311952116057478, −3.71436063776737489672777046960, −3.39054700781508067773144333223, −3.32015849081514474601455111043, −2.77558979408361996243685593576, −2.59319370732128406579054309435, −2.57269045227894597999459053235, −2.44242764082802598078629851268, −2.41977105557665952518090115422, −1.91766581453537347328269316365, −1.86369500206933907292338679609, −1.40630528192828701414920454954, −1.13000944792508839656636016535, −0.823450308388871391058056931353, −0.64934329427361870445977549321, −0.64860142078860972552518359003, −0.51056083655295912217857597277, 0.51056083655295912217857597277, 0.64860142078860972552518359003, 0.64934329427361870445977549321, 0.823450308388871391058056931353, 1.13000944792508839656636016535, 1.40630528192828701414920454954, 1.86369500206933907292338679609, 1.91766581453537347328269316365, 2.41977105557665952518090115422, 2.44242764082802598078629851268, 2.57269045227894597999459053235, 2.59319370732128406579054309435, 2.77558979408361996243685593576, 3.32015849081514474601455111043, 3.39054700781508067773144333223, 3.71436063776737489672777046960, 3.88249561024902311952116057478, 4.11723385155902819661124047961, 4.48779838242372634312711509977, 4.61714282873216234169376470025, 4.67664871950749303115676327737, 5.05306169097531726510222605106, 5.12364182304182091875626329614, 5.33910294454682421113255651658, 5.51042673816867756724809834414

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.