Properties

Label 63.8.e.c
Level 6363
Weight 88
Character orbit 63.e
Analytic conductor 19.68019.680
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,8,Mod(37,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.37");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 63=327 63 = 3^{2} \cdot 7
Weight: k k == 8 8
Character orbit: [χ][\chi] == 63.e (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.680256605519.6802566055
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x84x7+362x61072x5+36131x470480x3+698554x2663492x+2868273 x^{8} - 4x^{7} + 362x^{6} - 1072x^{5} + 36131x^{4} - 70480x^{3} + 698554x^{2} - 663492x + 2868273 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 223372 2^{2}\cdot 3^{3}\cdot 7^{2}
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ6q2+(β7+2β6+2β1)q4+(2β7+9β6+β5++46)q5+(14β6+273β4++161)q7+(8β33β2++343)q8++(35329β7449820β6++602063)q98+O(q100) q - \beta_{6} q^{2} + ( - \beta_{7} + 2 \beta_{6} + \cdots - 2 \beta_1) q^{4} + (2 \beta_{7} + 9 \beta_{6} + \beta_{5} + \cdots + 46) q^{5} + (14 \beta_{6} + 273 \beta_{4} + \cdots + 161) q^{7} + ( - 8 \beta_{3} - 3 \beta_{2} + \cdots + 343) q^{8}+ \cdots + ( - 35329 \beta_{7} - 449820 \beta_{6} + \cdots + 602063) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8qq2101q4+196q5+154q7+2694q8+5185q105210q117588q13+29932q14+21055q1611436q17+69158q19+175982q20+114526q22146220q23+8665405q98+O(q100) 8 q - q^{2} - 101 q^{4} + 196 q^{5} + 154 q^{7} + 2694 q^{8} + 5185 q^{10} - 5210 q^{11} - 7588 q^{13} + 29932 q^{14} + 21055 q^{16} - 11436 q^{17} + 69158 q^{19} + 175982 q^{20} + 114526 q^{22} - 146220 q^{23}+ \cdots - 8665405 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x84x7+362x61072x5+36131x470480x3+698554x2663492x+2868273 x^{8} - 4x^{7} + 362x^{6} - 1072x^{5} + 36131x^{4} - 70480x^{3} + 698554x^{2} - 663492x + 2868273 : Copy content Toggle raw display

β1\beta_{1}== (ν63ν5+334ν4663ν3+29038ν228707ν+287577)/6912 ( \nu^{6} - 3\nu^{5} + 334\nu^{4} - 663\nu^{3} + 29038\nu^{2} - 28707\nu + 287577 ) / 6912 Copy content Toggle raw display
β2\beta_{2}== (ν63ν5+238ν4471ν3+1486ν21251ν797319)/6912 ( \nu^{6} - 3\nu^{5} + 238\nu^{4} - 471\nu^{3} + 1486\nu^{2} - 1251\nu - 797319 ) / 6912 Copy content Toggle raw display
β3\beta_{3}== (ν6+3ν5670ν4+1335ν389182ν2+88515ν851625)/6912 ( -\nu^{6} + 3\nu^{5} - 670\nu^{4} + 1335\nu^{3} - 89182\nu^{2} + 88515\nu - 851625 ) / 6912 Copy content Toggle raw display
β4\beta_{4}== (8ν7+28ν62882ν5+7135ν4272324ν3+401365ν23032736ν444825)/3789072 ( -8\nu^{7} + 28\nu^{6} - 2882\nu^{5} + 7135\nu^{4} - 272324\nu^{3} + 401365\nu^{2} - 3032736\nu - 444825 ) / 3789072 Copy content Toggle raw display
β5\beta_{5}== (477ν76055ν6+191574ν53380155ν4+25170582ν3+4290009840)/60625152 ( 477 \nu^{7} - 6055 \nu^{6} + 191574 \nu^{5} - 3380155 \nu^{4} + 25170582 \nu^{3} + \cdots - 4290009840 ) / 60625152 Copy content Toggle raw display
β6\beta_{6}== (541ν7+6279ν6214630ν5+1963707ν424402118ν3++1509692976)/60625152 ( - 541 \nu^{7} + 6279 \nu^{6} - 214630 \nu^{5} + 1963707 \nu^{4} - 24402118 \nu^{3} + \cdots + 1509692976 ) / 60625152 Copy content Toggle raw display
β7\beta_{7}== (2357ν78876ν6+804941ν52136137ν4+71969297ν3++119000043)/8660736 ( 2357 \nu^{7} - 8876 \nu^{6} + 804941 \nu^{5} - 2136137 \nu^{4} + 71969297 \nu^{3} + \cdots + 119000043 ) / 8660736 Copy content Toggle raw display
ν\nu== (2β6+2β5β4β3β1+10)/21 ( 2\beta_{6} + 2\beta_{5} - \beta_{4} - \beta_{3} - \beta _1 + 10 ) / 21 Copy content Toggle raw display
ν2\nu^{2}== (2β6+2β5β4+3β314β2+17β11861)/21 ( 2\beta_{6} + 2\beta_{5} - \beta_{4} + 3\beta_{3} - 14\beta_{2} + 17\beta _1 - 1861 ) / 21 Copy content Toggle raw display
ν3\nu^{3}== (14β7994β6308β5+4858β4+160β314β2+524β1367)/21 ( 14\beta_{7} - 994\beta_{6} - 308\beta_{5} + 4858\beta_{4} + 160\beta_{3} - 14\beta_{2} + 524\beta _1 - 367 ) / 21 Copy content Toggle raw display
ν4\nu^{4}== (28β71990β6618β5+9717β4827β3+2478β2++298912)/21 ( 28 \beta_{7} - 1990 \beta_{6} - 618 \beta_{5} + 9717 \beta_{4} - 827 \beta_{3} + 2478 \beta_{2} + \cdots + 298912 ) / 21 Copy content Toggle raw display
ν5\nu^{5}== (6482β7+176108β6+52026β51385973β428863β3++46809)/21 ( - 6482 \beta_{7} + 176108 \beta_{6} + 52026 \beta_{5} - 1385973 \beta_{4} - 28863 \beta_{3} + \cdots + 46809 ) / 21 Copy content Toggle raw display
ν6\nu^{6}== (19516β7+533300β6+157624β54182212β4+179888β3+51651831)/21 ( - 19516 \beta_{7} + 533300 \beta_{6} + 157624 \beta_{5} - 4182212 \beta_{4} + 179888 \beta_{3} + \cdots - 51651831 ) / 21 Copy content Toggle raw display
ν7\nu^{7}== (1815240β730172774β68915230β5+318339239β4+5373047β3+16885466)/21 ( 1815240 \beta_{7} - 30172774 \beta_{6} - 8915230 \beta_{5} + 318339239 \beta_{4} + 5373047 \beta_{3} + \cdots - 16885466 ) / 21 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/63Z)×\left(\mathbb{Z}/63\mathbb{Z}\right)^\times.

nn 1010 2929
χ(n)\chi(n) 1β4-1 - \beta_{4} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
37.1
0.500000 + 2.45385i
0.500000 12.0633i
0.500000 + 13.6728i
0.500000 4.06331i
0.500000 2.45385i
0.500000 + 12.0633i
0.500000 13.6728i
0.500000 + 4.06331i
−8.70345 + 15.0748i 0 −87.5001 151.555i −37.1845 + 64.4054i 0 −789.501 447.472i 818.128 0 −647.267 1121.10i
37.2 −2.81424 + 4.87440i 0 48.1601 + 83.4158i 251.471 435.561i 0 854.822 304.667i −1262.58 0 1415.40 + 2451.54i
37.3 3.40109 5.89086i 0 40.8652 + 70.7806i 6.28050 10.8781i 0 −894.339 153.953i 1426.62 0 −42.7211 73.9951i
37.4 7.61660 13.1923i 0 −52.0252 90.1103i −122.567 + 212.292i 0 906.017 51.7322i 364.830 0 1867.09 + 3233.89i
46.1 −8.70345 15.0748i 0 −87.5001 + 151.555i −37.1845 64.4054i 0 −789.501 + 447.472i 818.128 0 −647.267 + 1121.10i
46.2 −2.81424 4.87440i 0 48.1601 83.4158i 251.471 + 435.561i 0 854.822 + 304.667i −1262.58 0 1415.40 2451.54i
46.3 3.40109 + 5.89086i 0 40.8652 70.7806i 6.28050 + 10.8781i 0 −894.339 + 153.953i 1426.62 0 −42.7211 + 73.9951i
46.4 7.61660 + 13.1923i 0 −52.0252 + 90.1103i −122.567 212.292i 0 906.017 + 51.7322i 364.830 0 1867.09 3233.89i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 37.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.8.e.c 8
3.b odd 2 1 21.8.e.a 8
7.c even 3 1 inner 63.8.e.c 8
7.c even 3 1 441.8.a.q 4
7.d odd 6 1 441.8.a.r 4
21.c even 2 1 147.8.e.k 8
21.g even 6 1 147.8.a.h 4
21.g even 6 1 147.8.e.k 8
21.h odd 6 1 21.8.e.a 8
21.h odd 6 1 147.8.a.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.8.e.a 8 3.b odd 2 1
21.8.e.a 8 21.h odd 6 1
63.8.e.c 8 1.a even 1 1 trivial
63.8.e.c 8 7.c even 3 1 inner
147.8.a.h 4 21.g even 6 1
147.8.a.i 4 21.h odd 6 1
147.8.e.k 8 21.c even 2 1
147.8.e.k 8 21.g even 6 1
441.8.a.q 4 7.c even 3 1
441.8.a.r 4 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T28+T27+307T26762T25+83256T2490072T23+3158496T22+2314656T2+103063104 T_{2}^{8} + T_{2}^{7} + 307T_{2}^{6} - 762T_{2}^{5} + 83256T_{2}^{4} - 90072T_{2}^{3} + 3158496T_{2}^{2} + 2314656T_{2} + 103063104 acting on S8new(63,[χ])S_{8}^{\mathrm{new}}(63, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+T7++103063104 T^{8} + T^{7} + \cdots + 103063104 Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8++13 ⁣ ⁣00 T^{8} + \cdots + 13\!\cdots\!00 Copy content Toggle raw display
77 T8++45 ⁣ ⁣01 T^{8} + \cdots + 45\!\cdots\!01 Copy content Toggle raw display
1111 T8++94 ⁣ ⁣00 T^{8} + \cdots + 94\!\cdots\!00 Copy content Toggle raw display
1313 (T4++32 ⁣ ⁣12)2 (T^{4} + \cdots + 32\!\cdots\!12)^{2} Copy content Toggle raw display
1717 T8++66 ⁣ ⁣76 T^{8} + \cdots + 66\!\cdots\!76 Copy content Toggle raw display
1919 T8++72 ⁣ ⁣36 T^{8} + \cdots + 72\!\cdots\!36 Copy content Toggle raw display
2323 T8++18 ⁣ ⁣96 T^{8} + \cdots + 18\!\cdots\!96 Copy content Toggle raw display
2929 (T4+65 ⁣ ⁣92)2 (T^{4} + \cdots - 65\!\cdots\!92)^{2} Copy content Toggle raw display
3131 T8++40 ⁣ ⁣01 T^{8} + \cdots + 40\!\cdots\!01 Copy content Toggle raw display
3737 T8++40 ⁣ ⁣24 T^{8} + \cdots + 40\!\cdots\!24 Copy content Toggle raw display
4141 (T4+81 ⁣ ⁣40)2 (T^{4} + \cdots - 81\!\cdots\!40)^{2} Copy content Toggle raw display
4343 (T4++27 ⁣ ⁣96)2 (T^{4} + \cdots + 27\!\cdots\!96)^{2} Copy content Toggle raw display
4747 T8++30 ⁣ ⁣00 T^{8} + \cdots + 30\!\cdots\!00 Copy content Toggle raw display
5353 T8++64 ⁣ ⁣76 T^{8} + \cdots + 64\!\cdots\!76 Copy content Toggle raw display
5959 T8++62 ⁣ ⁣00 T^{8} + \cdots + 62\!\cdots\!00 Copy content Toggle raw display
6161 T8++10 ⁣ ⁣00 T^{8} + \cdots + 10\!\cdots\!00 Copy content Toggle raw display
6767 T8++34 ⁣ ⁣00 T^{8} + \cdots + 34\!\cdots\!00 Copy content Toggle raw display
7171 (T4+21 ⁣ ⁣92)2 (T^{4} + \cdots - 21\!\cdots\!92)^{2} Copy content Toggle raw display
7373 T8++33 ⁣ ⁣96 T^{8} + \cdots + 33\!\cdots\!96 Copy content Toggle raw display
7979 T8++35 ⁣ ⁣61 T^{8} + \cdots + 35\!\cdots\!61 Copy content Toggle raw display
8383 (T4+20 ⁣ ⁣88)2 (T^{4} + \cdots - 20\!\cdots\!88)^{2} Copy content Toggle raw display
8989 T8++22 ⁣ ⁣16 T^{8} + \cdots + 22\!\cdots\!16 Copy content Toggle raw display
9797 (T4++98 ⁣ ⁣56)2 (T^{4} + \cdots + 98\!\cdots\!56)^{2} Copy content Toggle raw display
show more
show less