Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [63,8,Mod(37,63)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(63, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("63.37");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 63.e (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 21) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 |
|
−8.70345 | + | 15.0748i | 0 | −87.5001 | − | 151.555i | −37.1845 | + | 64.4054i | 0 | −789.501 | − | 447.472i | 818.128 | 0 | −647.267 | − | 1121.10i | ||||||||||||||||||||||||||||||||
37.2 | −2.81424 | + | 4.87440i | 0 | 48.1601 | + | 83.4158i | 251.471 | − | 435.561i | 0 | 854.822 | − | 304.667i | −1262.58 | 0 | 1415.40 | + | 2451.54i | |||||||||||||||||||||||||||||||||
37.3 | 3.40109 | − | 5.89086i | 0 | 40.8652 | + | 70.7806i | 6.28050 | − | 10.8781i | 0 | −894.339 | − | 153.953i | 1426.62 | 0 | −42.7211 | − | 73.9951i | |||||||||||||||||||||||||||||||||
37.4 | 7.61660 | − | 13.1923i | 0 | −52.0252 | − | 90.1103i | −122.567 | + | 212.292i | 0 | 906.017 | − | 51.7322i | 364.830 | 0 | 1867.09 | + | 3233.89i | |||||||||||||||||||||||||||||||||
46.1 | −8.70345 | − | 15.0748i | 0 | −87.5001 | + | 151.555i | −37.1845 | − | 64.4054i | 0 | −789.501 | + | 447.472i | 818.128 | 0 | −647.267 | + | 1121.10i | |||||||||||||||||||||||||||||||||
46.2 | −2.81424 | − | 4.87440i | 0 | 48.1601 | − | 83.4158i | 251.471 | + | 435.561i | 0 | 854.822 | + | 304.667i | −1262.58 | 0 | 1415.40 | − | 2451.54i | |||||||||||||||||||||||||||||||||
46.3 | 3.40109 | + | 5.89086i | 0 | 40.8652 | − | 70.7806i | 6.28050 | + | 10.8781i | 0 | −894.339 | + | 153.953i | 1426.62 | 0 | −42.7211 | + | 73.9951i | |||||||||||||||||||||||||||||||||
46.4 | 7.61660 | + | 13.1923i | 0 | −52.0252 | + | 90.1103i | −122.567 | − | 212.292i | 0 | 906.017 | + | 51.7322i | 364.830 | 0 | 1867.09 | − | 3233.89i | |||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 63.8.e.c | 8 | |
3.b | odd | 2 | 1 | 21.8.e.a | ✓ | 8 | |
7.c | even | 3 | 1 | inner | 63.8.e.c | 8 | |
7.c | even | 3 | 1 | 441.8.a.q | 4 | ||
7.d | odd | 6 | 1 | 441.8.a.r | 4 | ||
21.c | even | 2 | 1 | 147.8.e.k | 8 | ||
21.g | even | 6 | 1 | 147.8.a.h | 4 | ||
21.g | even | 6 | 1 | 147.8.e.k | 8 | ||
21.h | odd | 6 | 1 | 21.8.e.a | ✓ | 8 | |
21.h | odd | 6 | 1 | 147.8.a.i | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
21.8.e.a | ✓ | 8 | 3.b | odd | 2 | 1 | |
21.8.e.a | ✓ | 8 | 21.h | odd | 6 | 1 | |
63.8.e.c | 8 | 1.a | even | 1 | 1 | trivial | |
63.8.e.c | 8 | 7.c | even | 3 | 1 | inner | |
147.8.a.h | 4 | 21.g | even | 6 | 1 | ||
147.8.a.i | 4 | 21.h | odd | 6 | 1 | ||
147.8.e.k | 8 | 21.c | even | 2 | 1 | ||
147.8.e.k | 8 | 21.g | even | 6 | 1 | ||
441.8.a.q | 4 | 7.c | even | 3 | 1 | ||
441.8.a.r | 4 | 7.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .