L(s) = 1 | + (3.40 − 5.89i)2-s + (40.8 + 70.7i)4-s + (6.28 − 10.8i)5-s + (−894. − 153. i)7-s + 1.42e3·8-s + (−42.7 − 73.9i)10-s + (3.35e3 + 5.81e3i)11-s − 8.77e3·13-s + (−3.94e3 + 4.74e3i)14-s + (−378. + 655. i)16-s + (−6.96e3 − 1.20e4i)17-s + (−1.71e4 + 2.97e4i)19-s + 1.02e3·20-s + 4.57e4·22-s + (−4.22e4 + 7.31e4i)23-s + ⋯ |
L(s) = 1 | + (0.300 − 0.520i)2-s + (0.319 + 0.552i)4-s + (0.0224 − 0.0389i)5-s + (−0.985 − 0.169i)7-s + 0.985·8-s + (−0.0135 − 0.0233i)10-s + (0.761 + 1.31i)11-s − 1.10·13-s + (−0.384 + 0.462i)14-s + (−0.0231 + 0.0400i)16-s + (−0.343 − 0.595i)17-s + (−0.575 + 0.996i)19-s + 0.0286·20-s + 0.915·22-s + (−0.724 + 1.25i)23-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(0.106−0.994i)Λ(8−s)
Λ(s)=(=(63s/2ΓC(s+7/2)L(s)(0.106−0.994i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
0.106−0.994i
|
Analytic conductor: |
19.6802 |
Root analytic conductor: |
4.43624 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :7/2), 0.106−0.994i)
|
Particular Values
L(4) |
≈ |
1.21654+1.09276i |
L(21) |
≈ |
1.21654+1.09276i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(894.+153.i)T |
good | 2 | 1+(−3.40+5.89i)T+(−64−110.i)T2 |
| 5 | 1+(−6.28+10.8i)T+(−3.90e4−6.76e4i)T2 |
| 11 | 1+(−3.35e3−5.81e3i)T+(−9.74e6+1.68e7i)T2 |
| 13 | 1+8.77e3T+6.27e7T2 |
| 17 | 1+(6.96e3+1.20e4i)T+(−2.05e8+3.55e8i)T2 |
| 19 | 1+(1.71e4−2.97e4i)T+(−4.46e8−7.74e8i)T2 |
| 23 | 1+(4.22e4−7.31e4i)T+(−1.70e9−2.94e9i)T2 |
| 29 | 1−1.09e5T+1.72e10T2 |
| 31 | 1+(−7.70e4−1.33e5i)T+(−1.37e10+2.38e10i)T2 |
| 37 | 1+(−7.65e4+1.32e5i)T+(−4.74e10−8.22e10i)T2 |
| 41 | 1−1.61e5T+1.94e11T2 |
| 43 | 1+6.33e5T+2.71e11T2 |
| 47 | 1+(7.83e4−1.35e5i)T+(−2.53e11−4.38e11i)T2 |
| 53 | 1+(5.37e5+9.30e5i)T+(−5.87e11+1.01e12i)T2 |
| 59 | 1+(5.57e5+9.65e5i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(1.12e6−1.94e6i)T+(−1.57e12−2.72e12i)T2 |
| 67 | 1+(3.67e5+6.36e5i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1−1.20e6T+9.09e12T2 |
| 73 | 1+(3.09e6+5.36e6i)T+(−5.52e12+9.56e12i)T2 |
| 79 | 1+(−2.45e6+4.24e6i)T+(−9.60e12−1.66e13i)T2 |
| 83 | 1−7.43e6T+2.71e13T2 |
| 89 | 1+(−5.93e5+1.02e6i)T+(−2.21e13−3.83e13i)T2 |
| 97 | 1+3.93e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.47283469130527016071620668541, −12.41879124252332925716292165714, −11.90087889071431291616210348502, −10.32344423365499819384708419442, −9.406054270587112238421193453815, −7.59110156098108779411599724249, −6.66512075284171695965320220094, −4.61714282873216234169376470025, −3.32015849081514474601455111043, −1.86369500206933907292338679609,
0.51056083655295912217857597277, 2.59319370732128406579054309435, 4.48779838242372634312711509977, 6.13701590938347266837474711303, 6.69172719293595256822482720422, 8.457337284391272871124394697214, 9.830658241524903542950941484163, 10.87668394237478192188445768272, 12.21341797093785914751284682977, 13.48177236984458985376530199486