L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.774 + 2.09i)5-s + (2.64 + 0.126i)7-s + (0.707 − 0.707i)8-s + (−1.82 − 1.29i)10-s + (2.81 − 4.87i)11-s + (1.42 + 1.42i)13-s + (−0.806 + 2.51i)14-s + (0.500 + 0.866i)16-s + (1.37 + 5.12i)17-s + (1.94 + 3.37i)19-s + (1.71 − 1.42i)20-s + (3.97 + 3.97i)22-s + (−1.08 − 0.290i)23-s + ⋯ |
L(s) = 1 | + (−0.183 + 0.683i)2-s + (−0.433 − 0.249i)4-s + (−0.346 + 0.938i)5-s + (0.998 + 0.0477i)7-s + (0.249 − 0.249i)8-s + (−0.577 − 0.408i)10-s + (0.848 − 1.46i)11-s + (0.396 + 0.396i)13-s + (−0.215 + 0.673i)14-s + (0.125 + 0.216i)16-s + (0.333 + 1.24i)17-s + (0.446 + 0.773i)19-s + (0.384 − 0.319i)20-s + (0.848 + 0.848i)22-s + (−0.226 − 0.0606i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0172 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0172 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.985064 + 1.00216i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.985064 + 1.00216i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 - 0.965i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.774 - 2.09i)T \) |
| 7 | \( 1 + (-2.64 - 0.126i)T \) |
good | 11 | \( 1 + (-2.81 + 4.87i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.42 - 1.42i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1.37 - 5.12i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-1.94 - 3.37i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.08 + 0.290i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 - 3.15iT - 29T^{2} \) |
| 31 | \( 1 + (3.33 + 1.92i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.30 - 4.86i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 7.21iT - 41T^{2} \) |
| 43 | \( 1 + (-1.85 + 1.85i)T - 43iT^{2} \) |
| 47 | \( 1 + (-5.69 - 1.52i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-0.357 - 1.33i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-2.73 + 4.74i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.99 - 2.30i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.816 - 0.218i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 4.77T + 71T^{2} \) |
| 73 | \( 1 + (-5.42 + 1.45i)T + (63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (5.41 - 3.12i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.67 - 5.67i)T + 83iT^{2} \) |
| 89 | \( 1 + (5.96 + 10.3i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.63 + 6.63i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.92659252363954936731699653294, −9.967428549052866758273818056405, −8.717991328484331507905214352921, −8.217677378557810328303695363511, −7.34135389251959524382764142856, −6.26329108023602811459792059204, −5.71895348150591538054855325057, −4.20859617561997475798694958496, −3.37326789717661710567951912375, −1.47045975906220467538209455184,
0.981609851928948372742980243870, 2.16919217681946424645019821924, 3.84484106946892002421912132107, 4.68134699030956098353025335725, 5.41245640177877183644882085618, 7.18656524471831663274254430248, 7.77627711295113057650529643833, 8.941889819723380020863360434103, 9.342208485940641554802909650669, 10.40493713661763569198280469006