L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−2.20 − 0.378i)5-s + (0.126 − 2.64i)7-s + (0.707 + 0.707i)8-s + (−2.03 − 0.935i)10-s + (2.81 − 4.87i)11-s + (−1.42 + 1.42i)13-s + (0.806 − 2.51i)14-s + (0.500 + 0.866i)16-s + (5.12 − 1.37i)17-s + (−1.94 − 3.37i)19-s + (−1.71 − 1.42i)20-s + (3.97 − 3.97i)22-s + (0.290 − 1.08i)23-s + ⋯ |
L(s) = 1 | + (0.683 + 0.183i)2-s + (0.433 + 0.249i)4-s + (−0.985 − 0.169i)5-s + (0.0477 − 0.998i)7-s + (0.249 + 0.249i)8-s + (−0.642 − 0.295i)10-s + (0.848 − 1.46i)11-s + (−0.396 + 0.396i)13-s + (0.215 − 0.673i)14-s + (0.125 + 0.216i)16-s + (1.24 − 0.333i)17-s + (−0.446 − 0.773i)19-s + (−0.384 − 0.319i)20-s + (0.848 − 0.848i)22-s + (0.0606 − 0.226i)23-s + ⋯ |
Λ(s)=(=(630s/2ΓC(s)L(s)(0.616+0.787i)Λ(2−s)
Λ(s)=(=(630s/2ΓC(s+1/2)L(s)(0.616+0.787i)Λ(1−s)
Degree: |
2 |
Conductor: |
630
= 2⋅32⋅5⋅7
|
Sign: |
0.616+0.787i
|
Analytic conductor: |
5.03057 |
Root analytic conductor: |
2.24289 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ630(73,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 630, ( :1/2), 0.616+0.787i)
|
Particular Values
L(1) |
≈ |
1.67633−0.816427i |
L(21) |
≈ |
1.67633−0.816427i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.965−0.258i)T |
| 3 | 1 |
| 5 | 1+(2.20+0.378i)T |
| 7 | 1+(−0.126+2.64i)T |
good | 11 | 1+(−2.81+4.87i)T+(−5.5−9.52i)T2 |
| 13 | 1+(1.42−1.42i)T−13iT2 |
| 17 | 1+(−5.12+1.37i)T+(14.7−8.5i)T2 |
| 19 | 1+(1.94+3.37i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.290+1.08i)T+(−19.9−11.5i)T2 |
| 29 | 1+3.15iT−29T2 |
| 31 | 1+(3.33+1.92i)T+(15.5+26.8i)T2 |
| 37 | 1+(−4.86−1.30i)T+(32.0+18.5i)T2 |
| 41 | 1−7.21iT−41T2 |
| 43 | 1+(−1.85−1.85i)T+43iT2 |
| 47 | 1+(−1.52+5.69i)T+(−40.7−23.5i)T2 |
| 53 | 1+(1.33−0.357i)T+(45.8−26.5i)T2 |
| 59 | 1+(2.73−4.74i)T+(−29.5−51.0i)T2 |
| 61 | 1+(3.99−2.30i)T+(30.5−52.8i)T2 |
| 67 | 1+(−0.218−0.816i)T+(−58.0+33.5i)T2 |
| 71 | 1+4.77T+71T2 |
| 73 | 1+(−1.45−5.42i)T+(−63.2+36.5i)T2 |
| 79 | 1+(−5.41+3.12i)T+(39.5−68.4i)T2 |
| 83 | 1+(5.67−5.67i)T−83iT2 |
| 89 | 1+(−5.96−10.3i)T+(−44.5+77.0i)T2 |
| 97 | 1+(6.63+6.63i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83162135268034461660641425103, −9.595114480135332567624275120302, −8.503303115011667397109360701998, −7.69844091800040801968990041004, −6.92239505728064722626002974204, −5.95834567991953290656076991170, −4.68990505693547993220869463860, −3.92100101848708819390041155330, −3.06667558546848547771754561522, −0.882854889155919811856378915011,
1.79629812043631793362247417639, 3.15881057735837057572506694130, 4.12290250454635335395170106837, 5.09620220200329785196342296140, 6.10049592812679091267587042134, 7.20394918562390158014693350190, 7.88624294353729199618812716280, 9.043460504091149440334885187491, 9.958446471718874325351239583660, 10.87953915729989366218249050237