L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−2.20 − 0.378i)5-s + (0.126 − 2.64i)7-s + (0.707 + 0.707i)8-s + (−2.03 − 0.935i)10-s + (2.81 − 4.87i)11-s + (−1.42 + 1.42i)13-s + (0.806 − 2.51i)14-s + (0.500 + 0.866i)16-s + (5.12 − 1.37i)17-s + (−1.94 − 3.37i)19-s + (−1.71 − 1.42i)20-s + (3.97 − 3.97i)22-s + (0.290 − 1.08i)23-s + ⋯ |
L(s) = 1 | + (0.683 + 0.183i)2-s + (0.433 + 0.249i)4-s + (−0.985 − 0.169i)5-s + (0.0477 − 0.998i)7-s + (0.249 + 0.249i)8-s + (−0.642 − 0.295i)10-s + (0.848 − 1.46i)11-s + (−0.396 + 0.396i)13-s + (0.215 − 0.673i)14-s + (0.125 + 0.216i)16-s + (1.24 − 0.333i)17-s + (−0.446 − 0.773i)19-s + (−0.384 − 0.319i)20-s + (0.848 − 0.848i)22-s + (0.0606 − 0.226i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.616 + 0.787i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.616 + 0.787i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.67633 - 0.816427i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.67633 - 0.816427i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 - 0.258i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.20 + 0.378i)T \) |
| 7 | \( 1 + (-0.126 + 2.64i)T \) |
good | 11 | \( 1 + (-2.81 + 4.87i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.42 - 1.42i)T - 13iT^{2} \) |
| 17 | \( 1 + (-5.12 + 1.37i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (1.94 + 3.37i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.290 + 1.08i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + 3.15iT - 29T^{2} \) |
| 31 | \( 1 + (3.33 + 1.92i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.86 - 1.30i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 7.21iT - 41T^{2} \) |
| 43 | \( 1 + (-1.85 - 1.85i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.52 + 5.69i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (1.33 - 0.357i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (2.73 - 4.74i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.99 - 2.30i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.218 - 0.816i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 4.77T + 71T^{2} \) |
| 73 | \( 1 + (-1.45 - 5.42i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-5.41 + 3.12i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.67 - 5.67i)T - 83iT^{2} \) |
| 89 | \( 1 + (-5.96 - 10.3i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.63 + 6.63i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83162135268034461660641425103, −9.595114480135332567624275120302, −8.503303115011667397109360701998, −7.69844091800040801968990041004, −6.92239505728064722626002974204, −5.95834567991953290656076991170, −4.68990505693547993220869463860, −3.92100101848708819390041155330, −3.06667558546848547771754561522, −0.882854889155919811856378915011,
1.79629812043631793362247417639, 3.15881057735837057572506694130, 4.12290250454635335395170106837, 5.09620220200329785196342296140, 6.10049592812679091267587042134, 7.20394918562390158014693350190, 7.88624294353729199618812716280, 9.043460504091149440334885187491, 9.958446471718874325351239583660, 10.87953915729989366218249050237