L(s) = 1 | + i·2-s − 4-s + (−2 − i)5-s + i·7-s − i·8-s + (1 − 2i)10-s − 4i·13-s − 14-s + 16-s − 2i·17-s + 8·19-s + (2 + i)20-s − 8i·23-s + (3 + 4i)25-s + 4·26-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (−0.894 − 0.447i)5-s + 0.377i·7-s − 0.353i·8-s + (0.316 − 0.632i)10-s − 1.10i·13-s − 0.267·14-s + 0.250·16-s − 0.485i·17-s + 1.83·19-s + (0.447 + 0.223i)20-s − 1.66i·23-s + (0.600 + 0.800i)25-s + 0.784·26-s + ⋯ |
Λ(s)=(=(630s/2ΓC(s)L(s)(0.894+0.447i)Λ(2−s)
Λ(s)=(=(630s/2ΓC(s+1/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
630
= 2⋅32⋅5⋅7
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
5.03057 |
Root analytic conductor: |
2.24289 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ630(379,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 630, ( :1/2), 0.894+0.447i)
|
Particular Values
L(1) |
≈ |
1.00663−0.237634i |
L(21) |
≈ |
1.00663−0.237634i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 5 | 1+(2+i)T |
| 7 | 1−iT |
good | 11 | 1+11T2 |
| 13 | 1+4iT−13T2 |
| 17 | 1+2iT−17T2 |
| 19 | 1−8T+19T2 |
| 23 | 1+8iT−23T2 |
| 29 | 1+8T+29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1+8iT−37T2 |
| 41 | 1−12T+41T2 |
| 43 | 1+8iT−43T2 |
| 47 | 1+4iT−47T2 |
| 53 | 1−6iT−53T2 |
| 59 | 1+8T+59T2 |
| 61 | 1+6T+61T2 |
| 67 | 1−8iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1−4iT−73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1−83T2 |
| 89 | 1−4T+89T2 |
| 97 | 1+12iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.49839725824576295199357472012, −9.375143355219890940722532391734, −8.710471852531880161530895307943, −7.70978173658112462198926068231, −7.29784820732422506511104865715, −5.86477934218199323320095027219, −5.16243260990912172191610139147, −4.09237732048846523750102007496, −2.91353021490250363503403738067, −0.63892303427725341813276550352,
1.40245221211779527951862810289, 3.06440711733884952843546864526, 3.85889533379040075872733995812, 4.83849137185205450889737786480, 6.16337119095468751719743091885, 7.40815005074694681976714668290, 7.86094990335840108523802619017, 9.231004043744810732276820062365, 9.750325669363806175511469432261, 10.91946341175581805790662520964