Properties

Label 630.2.g.a
Level $630$
Weight $2$
Character orbit 630.g
Analytic conductor $5.031$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,2,Mod(379,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.379");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - q^{4} + ( - i - 2) q^{5} + i q^{7} - i q^{8} + ( - 2 i + 1) q^{10} - 4 i q^{13} - q^{14} + q^{16} - 2 i q^{17} + 8 q^{19} + (i + 2) q^{20} - 8 i q^{23} + (4 i + 3) q^{25} + 4 q^{26} - i q^{28} + \cdots - i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 4 q^{5} + 2 q^{10} - 2 q^{14} + 2 q^{16} + 16 q^{19} + 4 q^{20} + 6 q^{25} + 8 q^{26} - 16 q^{29} + 8 q^{31} + 4 q^{34} + 2 q^{35} - 2 q^{40} + 24 q^{41} + 16 q^{46} - 2 q^{49} - 8 q^{50}+ \cdots - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
379.1
1.00000i
1.00000i
1.00000i 0 −1.00000 −2.00000 + 1.00000i 0 1.00000i 1.00000i 0 1.00000 + 2.00000i
379.2 1.00000i 0 −1.00000 −2.00000 1.00000i 0 1.00000i 1.00000i 0 1.00000 2.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 630.2.g.a 2
3.b odd 2 1 630.2.g.f yes 2
4.b odd 2 1 5040.2.t.b 2
5.b even 2 1 inner 630.2.g.a 2
5.c odd 4 1 3150.2.a.e 1
5.c odd 4 1 3150.2.a.bn 1
12.b even 2 1 5040.2.t.q 2
15.d odd 2 1 630.2.g.f yes 2
15.e even 4 1 3150.2.a.p 1
15.e even 4 1 3150.2.a.z 1
20.d odd 2 1 5040.2.t.b 2
60.h even 2 1 5040.2.t.q 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
630.2.g.a 2 1.a even 1 1 trivial
630.2.g.a 2 5.b even 2 1 inner
630.2.g.f yes 2 3.b odd 2 1
630.2.g.f yes 2 15.d odd 2 1
3150.2.a.e 1 5.c odd 4 1
3150.2.a.p 1 15.e even 4 1
3150.2.a.z 1 15.e even 4 1
3150.2.a.bn 1 5.c odd 4 1
5040.2.t.b 2 4.b odd 2 1
5040.2.t.b 2 20.d odd 2 1
5040.2.t.q 2 12.b even 2 1
5040.2.t.q 2 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(630, [\chi])\):

\( T_{11} \) Copy content Toggle raw display
\( T_{29} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{2} + 4 \) Copy content Toggle raw display
$19$ \( (T - 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 64 \) Copy content Toggle raw display
$29$ \( (T + 8)^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 64 \) Copy content Toggle raw display
$41$ \( (T - 12)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 64 \) Copy content Toggle raw display
$47$ \( T^{2} + 16 \) Copy content Toggle raw display
$53$ \( T^{2} + 36 \) Copy content Toggle raw display
$59$ \( (T + 8)^{2} \) Copy content Toggle raw display
$61$ \( (T + 6)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 64 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 16 \) Copy content Toggle raw display
$79$ \( (T + 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T - 4)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 144 \) Copy content Toggle raw display
show more
show less