L(s) = 1 | − 16·2-s + 2·3-s + 136·4-s + 8·5-s − 32·6-s + 4·7-s − 816·8-s − 9-s − 128·10-s + 11-s + 272·12-s + 2·13-s − 64·14-s + 16·15-s + 3.87e3·16-s + 11·17-s + 16·18-s − 2·19-s + 1.08e3·20-s + 8·21-s − 16·22-s + 11·23-s − 1.63e3·24-s + 28·25-s − 32·26-s − 7·27-s + 544·28-s + ⋯ |
L(s) = 1 | − 11.3·2-s + 1.15·3-s + 68·4-s + 3.57·5-s − 13.0·6-s + 1.51·7-s − 288.·8-s − 1/3·9-s − 40.4·10-s + 0.301·11-s + 78.5·12-s + 0.554·13-s − 17.1·14-s + 4.13·15-s + 969·16-s + 2.66·17-s + 3.77·18-s − 0.458·19-s + 243.·20-s + 1.74·21-s − 3.41·22-s + 2.29·23-s − 333.·24-s + 28/5·25-s − 6.27·26-s − 1.34·27-s + 102.·28-s + ⋯ |
Λ(s)=(=((216⋅332⋅516⋅716)s/2ΓC(s)16L(s)Λ(2−s)
Λ(s)=(=((216⋅332⋅516⋅716)s/2ΓC(s+1/2)16L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.275399849 |
L(21) |
≈ |
1.275399849 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+T)16 |
| 3 | 1−2T+5T2−5T3+8T4−8T5−20T6+17pT7−61pT8+17p2T9−20p2T10−8p3T11+8p4T12−5p5T13+5p6T14−2p7T15+p8T16 |
| 5 | (1−T+T2)8 |
| 7 | 1−4T+15T2−46T3+85T4−234T5+295T6+50pT7−39T8+50p2T9+295p2T10−234p3T11+85p4T12−46p5T13+15p6T14−4p7T15+p8T16 |
good | 11 | 1−T−35T2+182T3+577T4−5289T5+8314T6+80986T7−380701T8+165840T9+6417590T10−21138520T11−17857183T12+372829025T13−755353711T14−1808389533T15+15175368627T16−1808389533pT17−755353711p2T18+372829025p3T19−17857183p4T20−21138520p5T21+6417590p6T22+165840p7T23−380701p8T24+80986p9T25+8314p10T26−5289p11T27+577p12T28+182p13T29−35p14T30−p15T31+p16T32 |
| 13 | 1−2T−50T2+148T3+1054T4−3995T5−11532T6+43443T7+117342T8+20138T9−2880550T10−3340678T11+58331516T12−10068559T13−672470458T14+306068259T15+6775158987T16+306068259pT17−672470458p2T18−10068559p3T19+58331516p4T20−3340678p5T21−2880550p6T22+20138p7T23+117342p8T24+43443p9T25−11532p10T26−3995p11T27+1054p12T28+148p13T29−50p14T30−2p15T31+p16T32 |
| 17 | 1−11T+36T2+123T3−1898T4+9669T5−17977T6−83870T7+834166T8−3577974T9+6674756T10+20040864T11−226666002T12+969820747T13−1237622341T14−9875829222T15+67383134907T16−9875829222pT17−1237622341p2T18+969820747p3T19−226666002p4T20+20040864p5T21+6674756p6T22−3577974p7T23+834166p8T24−83870p9T25−17977p10T26+9669p11T27−1898p12T28+123p13T29+36p14T30−11p15T31+p16T32 |
| 19 | 1+2T−54T2+52T3+1522T4−5531T5−18356T6+142945T7−156428T8−2136646T9+5666688T10+23411554T11−135081014T12−508657467T13+5117825840T14+6906391627T15−121849980107T16+6906391627pT17+5117825840p2T18−508657467p3T19−135081014p4T20+23411554p5T21+5666688p6T22−2136646p7T23−156428p8T24+142945p9T25−18356p10T26−5531p11T27+1522p12T28+52p13T29−54p14T30+2p15T31+p16T32 |
| 23 | 1−11T−8T2+511T3−1175T4−318pT5+31375T6−146176T7+863162T8+3529440T9−34166005T10+8815708T11+134850764T12−1234120523T13+19738400159T14+2588217123T15−586357209291T16+2588217123pT17+19738400159p2T18−1234120523p3T19+134850764p4T20+8815708p5T21−34166005p6T22+3529440p7T23+863162p8T24−146176p9T25+31375p10T26−318p12T27−1175p12T28+511p13T29−8p14T30−11p15T31+p16T32 |
| 29 | 1−17T+46T2+223T3+3250T4−18084T5−204302T6+750182T7+3378518T8+10195995T9−165509581T10+1120124pT11+4544588759T12−14362280831T13−142821670546T14+116125876596T15+6133655884938T16+116125876596pT17−142821670546p2T18−14362280831p3T19+4544588759p4T20+1120124p6T21−165509581p6T22+10195995p7T23+3378518p8T24+750182p9T25−204302p10T26−18084p11T27+3250p12T28+223p13T29+46p14T30−17p15T31+p16T32 |
| 31 | (1−15T+294T2−2963T3+33518T4−256035T5+2103711T6−12738397T7+81705846T8−12738397pT9+2103711p2T10−256035p3T11+33518p4T12−2963p5T13+294p6T14−15p7T15+p8T16)2 |
| 37 | 1+2T−109T2−494T3+4396T4+37709T5+5949T6−1192233T7−6568281T8+428352pT9+180379971T10−663666882T11−2633817279T12+62063414607T13+300032298102T14−1464225969303T15−17940373399443T16−1464225969303pT17+300032298102p2T18+62063414607p3T19−2633817279p4T20−663666882p5T21+180379971p6T22+428352p8T23−6568281p8T24−1192233p9T25+5949p10T26+37709p11T27+4396p12T28−494p13T29−109p14T30+2p15T31+p16T32 |
| 41 | 1−7T−58T2+821T3−5081T4+3487T5+202690T6−2313484T7+22320617T8−84574319T9−449228446T10+8174132915T11−61865466443T12+229869969509T13+311827818587T14−13738704403974T15+126160448679906T16−13738704403974pT17+311827818587p2T18+229869969509p3T19−61865466443p4T20+8174132915p5T21−449228446p6T22−84574319p7T23+22320617p8T24−2313484p9T25+202690p10T26+3487p11T27−5081p12T28+821p13T29−58p14T30−7p15T31+p16T32 |
| 43 | 1+13T−110T2−1567T3+10823T4+109505T5−883584T6−5592870T7+52864479T8+206005533T9−2766579456T10−7286801151T11+131529658809T12+225678713547T13−6233727820281T14−3123476792046T15+288754313221062T16−3123476792046pT17−6233727820281p2T18+225678713547p3T19+131529658809p4T20−7286801151p5T21−2766579456p6T22+206005533p7T23+52864479p8T24−5592870p9T25−883584p10T26+109505p11T27+10823p12T28−1567p13T29−110p14T30+13p15T31+p16T32 |
| 47 | (1−5T+167T2−679T3+12865T4−55056T5+721843T6−3490742T7+35510129T8−3490742pT9+721843p2T10−55056p3T11+12865p4T12−679p5T13+167p6T14−5p7T15+p8T16)2 |
| 53 | 1−18T−25T2+3094T3−20382T4−155341T5+2463947T6−2962263T7−127200023T8+760818902T9+3333886647T10−61667632700T11+106780502839T12+3773454519213T13−28393687643164T14−98984202945069T15+2205152767325745T16−98984202945069pT17−28393687643164p2T18+3773454519213p3T19+106780502839p4T20−61667632700p5T21+3333886647p6T22+760818902p7T23−127200023p8T24−2962263p9T25+2463947p10T26−155341p11T27−20382p12T28+3094p13T29−25p14T30−18p15T31+p16T32 |
| 59 | (1+T+317T2+659T3+48346T4+123360T5+4790140T6+11791354T7+334628690T8+11791354pT9+4790140p2T10+123360p3T11+48346p4T12+659p5T13+317p6T14+p7T15+p8T16)2 |
| 61 | (1−27T+644T2−9523T3+127396T4−1294067T5+12537951T6−101639815T7+845706468T8−101639815pT9+12537951p2T10−1294067p3T11+127396p4T12−9523p5T13+644p6T14−27p7T15+p8T16)2 |
| 67 | (1−10T+183T2−1911T3+28302T4−239130T5+2683324T6−21197185T7+215653584T8−21197185pT9+2683324p2T10−239130p3T11+28302p4T12−1911p5T13+183p6T14−10p7T15+p8T16)2 |
| 71 | (1+19T+400T2+3773T3+41473T4+130458T5+473407T6−19694168T7−122824232T8−19694168pT9+473407p2T10+130458p3T11+41473p4T12+3773p5T13+400p6T14+19p7T15+p8T16)2 |
| 73 | 1+8T−390T2−908T3+103150T4−105353T5−16697378T6+75246967T7+1927206172T8−14189615254T9−139595267550T10+1686118517626T11+5218854241786T12−119151906708597T13+190749604993352T14+3821131738775017T15−31483648169073569T16+3821131738775017pT17+190749604993352p2T18−119151906708597p3T19+5218854241786p4T20+1686118517626p5T21−139595267550p6T22−14189615254p7T23+1927206172p8T24+75246967p9T25−16697378p10T26−105353p11T27+103150p12T28−908p13T29−390p14T30+8p15T31+p16T32 |
| 79 | (1−25T+807T2−13099T3+239467T4−2871909T5+37853854T6−357554245T7+46953672pT8−357554245pT9+37853854p2T10−2871909p3T11+239467p4T12−13099p5T13+807p6T14−25p7T15+p8T16)2 |
| 83 | 1−2T−379T2+46T3+71929T4+111425T5−9247598T6−27250484T7+925626125T8+3684425840T9−76460286955T10−351032380757T11+5350114348114T12+23636419050310T13−345108599067805T14−759472537118196T15+25092808099894680T16−759472537118196pT17−345108599067805p2T18+23636419050310p3T19+5350114348114p4T20−351032380757p5T21−76460286955p6T22+3684425840p7T23+925626125p8T24−27250484p9T25−9247598p10T26+111425p11T27+71929p12T28+46p13T29−379p14T30−2p15T31+p16T32 |
| 89 | 1+6T−361T2−3094T3+62940T4+748723T5−6298663T6−119355885T7+250393933T8+13841837530T9+33272999661T10−1196873353342T11−8138474562173T12+74723700233589T13+1028573157441158T14−2348330140909041T15−100635305983812723T16−2348330140909041pT17+1028573157441158p2T18+74723700233589p3T19−8138474562173p4T20−1196873353342p5T21+33272999661p6T22+13841837530p7T23+250393933p8T24−119355885p9T25−6298663p10T26+748723p11T27+62940p12T28−3094p13T29−361p14T30+6p15T31+p16T32 |
| 97 | 1−26T−56T2+2492T3+90143T4−817018T5−11928114T6−57652506T7+2793757095T8+11900406246T9−106656506274T10−4250712480600T11+2907448664925T12+284134319779998T13+4080312688533132T14−249527458766268pT15−351229803717868731T16−249527458766268p2T17+4080312688533132p2T18+284134319779998p3T19+2907448664925p4T20−4250712480600p5T21−106656506274p6T22+11900406246p7T23+2793757095p8T24−57652506p9T25−11928114p10T26−817018p11T27+90143p12T28+2492p13T29−56p14T30−26p15T31+p16T32 |
show more | |
show less | |
L(s)=p∏ j=1∏32(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−2.62795830361231431315216521751, −2.53031063379358800228686114144, −2.43552873561276168320235241440, −2.38950179677767182420383218145, −2.22940446256406910489669197778, −2.21759646319098869761016061067, −2.19154741720087814963968006267, −2.15244198884246532912923334627, −1.95130698274305457789969861333, −1.84113802483322056501018123538, −1.81676894652539480540176291978, −1.76487442993915784144351759858, −1.74492879988632525760616594683, −1.49658977389916115675831477868, −1.35100470718697936698890405560, −1.34140063108091855632433071203, −1.11237675984058315613027233949, −1.08445874562826869742992800865, −1.04524203634278503185634118968, −0.859189649824870529058602089556, −0.819694694871868081607301204702, −0.77336241069871618124826443583, −0.73193651490986429127265168186, −0.48967435316127325420660519437, −0.46979706644094715782197522417,
0.46979706644094715782197522417, 0.48967435316127325420660519437, 0.73193651490986429127265168186, 0.77336241069871618124826443583, 0.819694694871868081607301204702, 0.859189649824870529058602089556, 1.04524203634278503185634118968, 1.08445874562826869742992800865, 1.11237675984058315613027233949, 1.34140063108091855632433071203, 1.35100470718697936698890405560, 1.49658977389916115675831477868, 1.74492879988632525760616594683, 1.76487442993915784144351759858, 1.81676894652539480540176291978, 1.84113802483322056501018123538, 1.95130698274305457789969861333, 2.15244198884246532912923334627, 2.19154741720087814963968006267, 2.21759646319098869761016061067, 2.22940446256406910489669197778, 2.38950179677767182420383218145, 2.43552873561276168320235241440, 2.53031063379358800228686114144, 2.62795830361231431315216521751
Plot not available for L-functions of degree greater than 10.