Properties

Label 630.2.i.i
Level 630630
Weight 22
Character orbit 630.i
Analytic conductor 5.0315.031
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,2,Mod(121,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 630=23257 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 630.i (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.030575327345.03057532734
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16x15+2x144x13+5x12+2x1135x10+81x966x8++6561 x^{16} - x^{15} + 2 x^{14} - 4 x^{13} + 5 x^{12} + 2 x^{11} - 35 x^{10} + 81 x^{9} - 66 x^{8} + \cdots + 6561 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 3 3
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq2+(β7β1)q3+q4+(β4+1)q5+(β7+β1)q6+(β12+β2)q7q8+(β15+β14+β11+1)q9++(3β155β14+3β1)q99+O(q100) q - q^{2} + (\beta_{7} - \beta_1) q^{3} + q^{4} + ( - \beta_{4} + 1) q^{5} + ( - \beta_{7} + \beta_1) q^{6} + (\beta_{12} + \beta_{2}) q^{7} - q^{8} + ( - \beta_{15} + \beta_{14} + \beta_{11} + \cdots - 1) q^{9}+ \cdots + (3 \beta_{15} - 5 \beta_{14} + \cdots - 3 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q16q2+2q3+16q4+8q52q6+4q716q86q98q10+q11+2q12+2q134q14+q15+16q16+11q17+6q182q19+8q20+5q99+O(q100) 16 q - 16 q^{2} + 2 q^{3} + 16 q^{4} + 8 q^{5} - 2 q^{6} + 4 q^{7} - 16 q^{8} - 6 q^{9} - 8 q^{10} + q^{11} + 2 q^{12} + 2 q^{13} - 4 q^{14} + q^{15} + 16 q^{16} + 11 q^{17} + 6 q^{18} - 2 q^{19} + 8 q^{20}+ \cdots - 5 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16x15+2x144x13+5x12+2x1135x10+81x966x8++6561 x^{16} - x^{15} + 2 x^{14} - 4 x^{13} + 5 x^{12} + 2 x^{11} - 35 x^{10} + 81 x^{9} - 66 x^{8} + \cdots + 6561 : Copy content Toggle raw display

β1\beta_{1}== (6ν15+47ν14161ν13+13ν12287ν11+1486ν101109ν9+188811)/43740 ( 6 \nu^{15} + 47 \nu^{14} - 161 \nu^{13} + 13 \nu^{12} - 287 \nu^{11} + 1486 \nu^{10} - 1109 \nu^{9} + \cdots - 188811 ) / 43740 Copy content Toggle raw display
β2\beta_{2}== (193ν15+520ν142882ν13+5890ν1214819ν11+17755ν10+448335)/787320 ( - 193 \nu^{15} + 520 \nu^{14} - 2882 \nu^{13} + 5890 \nu^{12} - 14819 \nu^{11} + 17755 \nu^{10} + \cdots - 448335 ) / 787320 Copy content Toggle raw display
β3\beta_{3}== (119ν15+1900ν14+586ν13+1870ν1222943ν11+10315ν10++3881925)/787320 ( 119 \nu^{15} + 1900 \nu^{14} + 586 \nu^{13} + 1870 \nu^{12} - 22943 \nu^{11} + 10315 \nu^{10} + \cdots + 3881925 ) / 787320 Copy content Toggle raw display
β4\beta_{4}== (53ν15173ν14+37ν13317ν12+1474ν11899ν10+39366)/131220 ( 53 \nu^{15} - 173 \nu^{14} + 37 \nu^{13} - 317 \nu^{12} + 1474 \nu^{11} - 899 \nu^{10} + \cdots - 39366 ) / 131220 Copy content Toggle raw display
β5\beta_{5}== (92ν15+341ν14208ν13+209ν12736ν112242ν10++428652)/196830 ( - 92 \nu^{15} + 341 \nu^{14} - 208 \nu^{13} + 209 \nu^{12} - 736 \nu^{11} - 2242 \nu^{10} + \cdots + 428652 ) / 196830 Copy content Toggle raw display
β6\beta_{6}== (349ν15532ν14+1106ν13718ν12+767ν1112511ν10++3833811)/787320 ( 349 \nu^{15} - 532 \nu^{14} + 1106 \nu^{13} - 718 \nu^{12} + 767 \nu^{11} - 12511 \nu^{10} + \cdots + 3833811 ) / 787320 Copy content Toggle raw display
β7\beta_{7}== (ν15+ν142ν13+4ν125ν112ν10+35ν981ν8++2187)/2187 ( - \nu^{15} + \nu^{14} - 2 \nu^{13} + 4 \nu^{12} - 5 \nu^{11} - 2 \nu^{10} + 35 \nu^{9} - 81 \nu^{8} + \cdots + 2187 ) / 2187 Copy content Toggle raw display
β8\beta_{8}== (247ν15+1105ν143143ν13+3145ν127466ν11+20005ν10+2777490)/393660 ( - 247 \nu^{15} + 1105 \nu^{14} - 3143 \nu^{13} + 3145 \nu^{12} - 7466 \nu^{11} + 20005 \nu^{10} + \cdots - 2777490 ) / 393660 Copy content Toggle raw display
β9\beta_{9}== (229ν15385ν14349ν131345ν12+32ν11+4205ν10+174960)/393660 ( 229 \nu^{15} - 385 \nu^{14} - 349 \nu^{13} - 1345 \nu^{12} + 32 \nu^{11} + 4205 \nu^{10} + \cdots - 174960 ) / 393660 Copy content Toggle raw display
β10\beta_{10}== (727ν15+982ν144148ν13+9448ν123971ν11899ν10++234009)/787320 ( - 727 \nu^{15} + 982 \nu^{14} - 4148 \nu^{13} + 9448 \nu^{12} - 3971 \nu^{11} - 899 \nu^{10} + \cdots + 234009 ) / 787320 Copy content Toggle raw display
β11\beta_{11}== (619ν151520ν14+514ν13+6550ν12+4903ν11935ν10+2219805)/787320 ( - 619 \nu^{15} - 1520 \nu^{14} + 514 \nu^{13} + 6550 \nu^{12} + 4903 \nu^{11} - 935 \nu^{10} + \cdots - 2219805 ) / 787320 Copy content Toggle raw display
β12\beta_{12}== (503ν15+905ν14+1193ν1355ν12+4346ν1124115ν10++3171150)/393660 ( - 503 \nu^{15} + 905 \nu^{14} + 1193 \nu^{13} - 55 \nu^{12} + 4346 \nu^{11} - 24115 \nu^{10} + \cdots + 3171150 ) / 393660 Copy content Toggle raw display
β13\beta_{13}== (499ν15367ν14+1091ν133523ν12+5522ν117801ν10++1570266)/393660 ( 499 \nu^{15} - 367 \nu^{14} + 1091 \nu^{13} - 3523 \nu^{12} + 5522 \nu^{11} - 7801 \nu^{10} + \cdots + 1570266 ) / 393660 Copy content Toggle raw display
β14\beta_{14}== (1291ν1588ν14286ν132902ν1211947ν11+33671ν10+640791)/787320 ( 1291 \nu^{15} - 88 \nu^{14} - 286 \nu^{13} - 2902 \nu^{12} - 11947 \nu^{11} + 33671 \nu^{10} + \cdots - 640791 ) / 787320 Copy content Toggle raw display
β15\beta_{15}== (376ν15883ν14+269ν131717ν12+3413ν11+3176ν10+968841)/196830 ( 376 \nu^{15} - 883 \nu^{14} + 269 \nu^{13} - 1717 \nu^{12} + 3413 \nu^{11} + 3176 \nu^{10} + \cdots - 968841 ) / 196830 Copy content Toggle raw display
ν\nu== (β15+β14β13+β10+2β92β83β7++1)/3 ( - \beta_{15} + \beta_{14} - \beta_{13} + \beta_{10} + 2 \beta_{9} - 2 \beta_{8} - 3 \beta_{7} + \cdots + 1 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (2β15β14+β13β10+β9+2β8+β64β5+4)/3 ( - 2 \beta_{15} - \beta_{14} + \beta_{13} - \beta_{10} + \beta_{9} + 2 \beta_{8} + \beta_{6} - 4 \beta_{5} + \cdots - 4 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (β155β14+5β136β12+β10β9+β8++7)/3 ( - \beta_{15} - 5 \beta_{14} + 5 \beta_{13} - 6 \beta_{12} + \beta_{10} - \beta_{9} + \beta_{8} + \cdots + 7 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== (β15β145β13+3β12β10+β9+2β83β7+7)/3 ( \beta_{15} - \beta_{14} - 5 \beta_{13} + 3 \beta_{12} - \beta_{10} + \beta_{9} + 2 \beta_{8} - 3 \beta_{7} + \cdots - 7 ) / 3 Copy content Toggle raw display
ν5\nu^{5}== (7β152β14β139β126β112β1010β9+23)/3 ( - 7 \beta_{15} - 2 \beta_{14} - \beta_{13} - 9 \beta_{12} - 6 \beta_{11} - 2 \beta_{10} - 10 \beta_{9} + \cdots - 23 ) / 3 Copy content Toggle raw display
ν6\nu^{6}== (2β1522β14+β1312β1218β114β1023β9++32)/3 ( - 2 \beta_{15} - 22 \beta_{14} + \beta_{13} - 12 \beta_{12} - 18 \beta_{11} - 4 \beta_{10} - 23 \beta_{9} + \cdots + 32 ) / 3 Copy content Toggle raw display
ν7\nu^{7}== (40β15+37β14+2β1321β12+15β115β10+26)/3 ( - 40 \beta_{15} + 37 \beta_{14} + 2 \beta_{13} - 21 \beta_{12} + 15 \beta_{11} - 5 \beta_{10} + \cdots - 26 ) / 3 Copy content Toggle raw display
ν8\nu^{8}== (23β15+47β14+25β13+27β12+36β1152β10+163)/3 ( - 23 \beta_{15} + 47 \beta_{14} + 25 \beta_{13} + 27 \beta_{12} + 36 \beta_{11} - 52 \beta_{10} + \cdots - 163 ) / 3 Copy content Toggle raw display
ν9\nu^{9}== (80β1559β14+95β1360β12+37β1055β9+28β8++97)/3 ( 80 \beta_{15} - 59 \beta_{14} + 95 \beta_{13} - 60 \beta_{12} + 37 \beta_{10} - 55 \beta_{9} + 28 \beta_{8} + \cdots + 97 ) / 3 Copy content Toggle raw display
ν10\nu^{10}== (82β15+197β1432β13+147β12+171β1191β10++101)/3 ( 82 \beta_{15} + 197 \beta_{14} - 32 \beta_{13} + 147 \beta_{12} + 171 \beta_{11} - 91 \beta_{10} + \cdots + 101 ) / 3 Copy content Toggle raw display
ν11\nu^{11}== (106β15+520β14+8β13+117β12+228β11+52β10+59)/3 ( - 106 \beta_{15} + 520 \beta_{14} + 8 \beta_{13} + 117 \beta_{12} + 228 \beta_{11} + 52 \beta_{10} + \cdots - 59 ) / 3 Copy content Toggle raw display
ν12\nu^{12}== (232β154β148β13+483β12+18β11+482β10++743)/3 ( 232 \beta_{15} - 4 \beta_{14} - 8 \beta_{13} + 483 \beta_{12} + 18 \beta_{11} + 482 \beta_{10} + \cdots + 743 ) / 3 Copy content Toggle raw display
ν13\nu^{13}== (598β15+478β14+929β13435β12+1032β11+157β10++532)/3 ( - 598 \beta_{15} + 478 \beta_{14} + 929 \beta_{13} - 435 \beta_{12} + 1032 \beta_{11} + 157 \beta_{10} + \cdots + 532 ) / 3 Copy content Toggle raw display
ν14\nu^{14}== (32β15+713β14+934β13+1575β12+1368β11403β10+2152)/3 ( - 32 \beta_{15} + 713 \beta_{14} + 934 \beta_{13} + 1575 \beta_{12} + 1368 \beta_{11} - 403 \beta_{10} + \cdots - 2152 ) / 3 Copy content Toggle raw display
ν15\nu^{15}== (2627β152318β14+617β13+174β121548β11+3871β10+1532)/3 ( 2627 \beta_{15} - 2318 \beta_{14} + 617 \beta_{13} + 174 \beta_{12} - 1548 \beta_{11} + 3871 \beta_{10} + \cdots - 1532 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/630Z)×\left(\mathbb{Z}/630\mathbb{Z}\right)^\times.

nn 127127 281281 451451
χ(n)\chi(n) 11 β4-\beta_{4} β4-\beta_{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
121.1
−0.579249 1.63232i
0.702194 1.58333i
−1.73198 0.0153002i
1.52536 0.820531i
−1.03843 + 1.38624i
−0.803168 + 1.53458i
1.67659 + 0.434811i
0.748691 + 1.56188i
−0.579249 + 1.63232i
0.702194 + 1.58333i
−1.73198 + 0.0153002i
1.52536 + 0.820531i
−1.03843 1.38624i
−0.803168 1.53458i
1.67659 0.434811i
0.748691 1.56188i
−1.00000 −1.70326 + 0.314515i 1.00000 0.500000 + 0.866025i 1.70326 0.314515i 2.48140 + 0.917950i −1.00000 2.80216 1.07140i −0.500000 0.866025i
121.2 −1.00000 −1.02010 + 1.39978i 1.00000 0.500000 + 0.866025i 1.02010 1.39978i −2.52336 + 0.795395i −1.00000 −0.918776 2.85585i −0.500000 0.866025i
121.3 −1.00000 −0.879242 1.49229i 1.00000 0.500000 + 0.866025i 0.879242 + 1.49229i 2.58337 0.571125i −1.00000 −1.45387 + 2.62417i −0.500000 0.866025i
121.4 −1.00000 0.0520808 + 1.73127i 1.00000 0.500000 + 0.866025i −0.0520808 1.73127i 0.226513 + 2.63604i −1.00000 −2.99458 + 0.180332i −0.500000 0.866025i
121.5 −1.00000 0.681302 1.59243i 1.00000 0.500000 + 0.866025i −0.681302 + 1.59243i −1.52280 + 2.16358i −1.00000 −2.07165 2.16985i −0.500000 0.866025i
121.6 −1.00000 0.927397 1.46285i 1.00000 0.500000 + 0.866025i −0.927397 + 1.46285i 0.832221 2.51146i −1.00000 −1.27987 2.71329i −0.500000 0.866025i
121.7 −1.00000 1.21485 + 1.23456i 1.00000 0.500000 + 0.866025i −1.21485 1.23456i −1.09594 2.40809i −1.00000 −0.0482768 + 2.99961i −0.500000 0.866025i
121.8 −1.00000 1.72697 0.132553i 1.00000 0.500000 + 0.866025i −1.72697 + 0.132553i 1.01860 + 2.44181i −1.00000 2.96486 0.457832i −0.500000 0.866025i
151.1 −1.00000 −1.70326 0.314515i 1.00000 0.500000 0.866025i 1.70326 + 0.314515i 2.48140 0.917950i −1.00000 2.80216 + 1.07140i −0.500000 + 0.866025i
151.2 −1.00000 −1.02010 1.39978i 1.00000 0.500000 0.866025i 1.02010 + 1.39978i −2.52336 0.795395i −1.00000 −0.918776 + 2.85585i −0.500000 + 0.866025i
151.3 −1.00000 −0.879242 + 1.49229i 1.00000 0.500000 0.866025i 0.879242 1.49229i 2.58337 + 0.571125i −1.00000 −1.45387 2.62417i −0.500000 + 0.866025i
151.4 −1.00000 0.0520808 1.73127i 1.00000 0.500000 0.866025i −0.0520808 + 1.73127i 0.226513 2.63604i −1.00000 −2.99458 0.180332i −0.500000 + 0.866025i
151.5 −1.00000 0.681302 + 1.59243i 1.00000 0.500000 0.866025i −0.681302 1.59243i −1.52280 2.16358i −1.00000 −2.07165 + 2.16985i −0.500000 + 0.866025i
151.6 −1.00000 0.927397 + 1.46285i 1.00000 0.500000 0.866025i −0.927397 1.46285i 0.832221 + 2.51146i −1.00000 −1.27987 + 2.71329i −0.500000 + 0.866025i
151.7 −1.00000 1.21485 1.23456i 1.00000 0.500000 0.866025i −1.21485 + 1.23456i −1.09594 + 2.40809i −1.00000 −0.0482768 2.99961i −0.500000 + 0.866025i
151.8 −1.00000 1.72697 + 0.132553i 1.00000 0.500000 0.866025i −1.72697 0.132553i 1.01860 2.44181i −1.00000 2.96486 + 0.457832i −0.500000 + 0.866025i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 121.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 630.2.i.i 16
3.b odd 2 1 1890.2.i.i 16
7.c even 3 1 630.2.l.i yes 16
9.c even 3 1 630.2.l.i yes 16
9.d odd 6 1 1890.2.l.i 16
21.h odd 6 1 1890.2.l.i 16
63.h even 3 1 inner 630.2.i.i 16
63.j odd 6 1 1890.2.i.i 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
630.2.i.i 16 1.a even 1 1 trivial
630.2.i.i 16 63.h even 3 1 inner
630.2.l.i yes 16 7.c even 3 1
630.2.l.i yes 16 9.c even 3 1
1890.2.i.i 16 3.b odd 2 1
1890.2.i.i 16 63.j odd 6 1
1890.2.l.i 16 9.d odd 6 1
1890.2.l.i 16 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(630,[χ])S_{2}^{\mathrm{new}}(630, [\chi]):

T1116T1115+53T1114+116T1113+2018T1112+4688T1111++2916 T_{11}^{16} - T_{11}^{15} + 53 T_{11}^{14} + 116 T_{11}^{13} + 2018 T_{11}^{12} + 4688 T_{11}^{11} + \cdots + 2916 Copy content Toggle raw display
T13162T1315+54T13148T1313+1834T1312+477T1311++2298256 T_{13}^{16} - 2 T_{13}^{15} + 54 T_{13}^{14} - 8 T_{13}^{13} + 1834 T_{13}^{12} + 477 T_{13}^{11} + \cdots + 2298256 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+1)16 (T + 1)^{16} Copy content Toggle raw display
33 T162T15++6561 T^{16} - 2 T^{15} + \cdots + 6561 Copy content Toggle raw display
55 (T2T+1)8 (T^{2} - T + 1)^{8} Copy content Toggle raw display
77 T164T15++5764801 T^{16} - 4 T^{15} + \cdots + 5764801 Copy content Toggle raw display
1111 T16T15++2916 T^{16} - T^{15} + \cdots + 2916 Copy content Toggle raw display
1313 T162T15++2298256 T^{16} - 2 T^{15} + \cdots + 2298256 Copy content Toggle raw display
1717 T16++8707129344 T^{16} + \cdots + 8707129344 Copy content Toggle raw display
1919 T16++1174158756 T^{16} + \cdots + 1174158756 Copy content Toggle raw display
2323 T16++927567936 T^{16} + \cdots + 927567936 Copy content Toggle raw display
2929 T16++17639292969 T^{16} + \cdots + 17639292969 Copy content Toggle raw display
3131 (T815T7++27294)2 (T^{8} - 15 T^{7} + \cdots + 27294)^{2} Copy content Toggle raw display
3737 T16++147622500 T^{16} + \cdots + 147622500 Copy content Toggle raw display
4141 T16++86812992387801 T^{16} + \cdots + 86812992387801 Copy content Toggle raw display
4343 T16++285914281 T^{16} + \cdots + 285914281 Copy content Toggle raw display
4747 (T85T7+423063)2 (T^{8} - 5 T^{7} + \cdots - 423063)^{2} Copy content Toggle raw display
5353 T16++1238515248996 T^{16} + \cdots + 1238515248996 Copy content Toggle raw display
5959 (T8+T7155T6++1458)2 (T^{8} + T^{7} - 155 T^{6} + \cdots + 1458)^{2} Copy content Toggle raw display
6161 (T827T7+502368)2 (T^{8} - 27 T^{7} + \cdots - 502368)^{2} Copy content Toggle raw display
6767 (T810T7++40406508)2 (T^{8} - 10 T^{7} + \cdots + 40406508)^{2} Copy content Toggle raw display
7171 (T8+19T7+7422678)2 (T^{8} + 19 T^{7} + \cdots - 7422678)^{2} Copy content Toggle raw display
7373 T16+8T15++2143296 T^{16} + 8 T^{15} + \cdots + 2143296 Copy content Toggle raw display
7979 (T825T7+406534)2 (T^{8} - 25 T^{7} + \cdots - 406534)^{2} Copy content Toggle raw display
8383 T16++2857962683601 T^{16} + \cdots + 2857962683601 Copy content Toggle raw display
8989 T16++99588211776 T^{16} + \cdots + 99588211776 Copy content Toggle raw display
9797 T16++1545178274704 T^{16} + \cdots + 1545178274704 Copy content Toggle raw display
show more
show less