Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [630,2,Mod(121,630)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(630, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("630.121");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 630.i (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
121.1 |
|
−1.00000 | −1.70326 | + | 0.314515i | 1.00000 | 0.500000 | + | 0.866025i | 1.70326 | − | 0.314515i | 2.48140 | + | 0.917950i | −1.00000 | 2.80216 | − | 1.07140i | −0.500000 | − | 0.866025i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
121.2 | −1.00000 | −1.02010 | + | 1.39978i | 1.00000 | 0.500000 | + | 0.866025i | 1.02010 | − | 1.39978i | −2.52336 | + | 0.795395i | −1.00000 | −0.918776 | − | 2.85585i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
121.3 | −1.00000 | −0.879242 | − | 1.49229i | 1.00000 | 0.500000 | + | 0.866025i | 0.879242 | + | 1.49229i | 2.58337 | − | 0.571125i | −1.00000 | −1.45387 | + | 2.62417i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
121.4 | −1.00000 | 0.0520808 | + | 1.73127i | 1.00000 | 0.500000 | + | 0.866025i | −0.0520808 | − | 1.73127i | 0.226513 | + | 2.63604i | −1.00000 | −2.99458 | + | 0.180332i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
121.5 | −1.00000 | 0.681302 | − | 1.59243i | 1.00000 | 0.500000 | + | 0.866025i | −0.681302 | + | 1.59243i | −1.52280 | + | 2.16358i | −1.00000 | −2.07165 | − | 2.16985i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
121.6 | −1.00000 | 0.927397 | − | 1.46285i | 1.00000 | 0.500000 | + | 0.866025i | −0.927397 | + | 1.46285i | 0.832221 | − | 2.51146i | −1.00000 | −1.27987 | − | 2.71329i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
121.7 | −1.00000 | 1.21485 | + | 1.23456i | 1.00000 | 0.500000 | + | 0.866025i | −1.21485 | − | 1.23456i | −1.09594 | − | 2.40809i | −1.00000 | −0.0482768 | + | 2.99961i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
121.8 | −1.00000 | 1.72697 | − | 0.132553i | 1.00000 | 0.500000 | + | 0.866025i | −1.72697 | + | 0.132553i | 1.01860 | + | 2.44181i | −1.00000 | 2.96486 | − | 0.457832i | −0.500000 | − | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
151.1 | −1.00000 | −1.70326 | − | 0.314515i | 1.00000 | 0.500000 | − | 0.866025i | 1.70326 | + | 0.314515i | 2.48140 | − | 0.917950i | −1.00000 | 2.80216 | + | 1.07140i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
151.2 | −1.00000 | −1.02010 | − | 1.39978i | 1.00000 | 0.500000 | − | 0.866025i | 1.02010 | + | 1.39978i | −2.52336 | − | 0.795395i | −1.00000 | −0.918776 | + | 2.85585i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
151.3 | −1.00000 | −0.879242 | + | 1.49229i | 1.00000 | 0.500000 | − | 0.866025i | 0.879242 | − | 1.49229i | 2.58337 | + | 0.571125i | −1.00000 | −1.45387 | − | 2.62417i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
151.4 | −1.00000 | 0.0520808 | − | 1.73127i | 1.00000 | 0.500000 | − | 0.866025i | −0.0520808 | + | 1.73127i | 0.226513 | − | 2.63604i | −1.00000 | −2.99458 | − | 0.180332i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
151.5 | −1.00000 | 0.681302 | + | 1.59243i | 1.00000 | 0.500000 | − | 0.866025i | −0.681302 | − | 1.59243i | −1.52280 | − | 2.16358i | −1.00000 | −2.07165 | + | 2.16985i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
151.6 | −1.00000 | 0.927397 | + | 1.46285i | 1.00000 | 0.500000 | − | 0.866025i | −0.927397 | − | 1.46285i | 0.832221 | + | 2.51146i | −1.00000 | −1.27987 | + | 2.71329i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
151.7 | −1.00000 | 1.21485 | − | 1.23456i | 1.00000 | 0.500000 | − | 0.866025i | −1.21485 | + | 1.23456i | −1.09594 | + | 2.40809i | −1.00000 | −0.0482768 | − | 2.99961i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
151.8 | −1.00000 | 1.72697 | + | 0.132553i | 1.00000 | 0.500000 | − | 0.866025i | −1.72697 | − | 0.132553i | 1.01860 | − | 2.44181i | −1.00000 | 2.96486 | + | 0.457832i | −0.500000 | + | 0.866025i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.h | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 630.2.i.i | ✓ | 16 |
3.b | odd | 2 | 1 | 1890.2.i.i | 16 | ||
7.c | even | 3 | 1 | 630.2.l.i | yes | 16 | |
9.c | even | 3 | 1 | 630.2.l.i | yes | 16 | |
9.d | odd | 6 | 1 | 1890.2.l.i | 16 | ||
21.h | odd | 6 | 1 | 1890.2.l.i | 16 | ||
63.h | even | 3 | 1 | inner | 630.2.i.i | ✓ | 16 |
63.j | odd | 6 | 1 | 1890.2.i.i | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
630.2.i.i | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
630.2.i.i | ✓ | 16 | 63.h | even | 3 | 1 | inner |
630.2.l.i | yes | 16 | 7.c | even | 3 | 1 | |
630.2.l.i | yes | 16 | 9.c | even | 3 | 1 | |
1890.2.i.i | 16 | 3.b | odd | 2 | 1 | ||
1890.2.i.i | 16 | 63.j | odd | 6 | 1 | ||
1890.2.l.i | 16 | 9.d | odd | 6 | 1 | ||
1890.2.l.i | 16 | 21.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|