Properties

Label 630.2.i.i
Level $630$
Weight $2$
Character orbit 630.i
Analytic conductor $5.031$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,2,Mod(121,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 2 x^{14} - 4 x^{13} + 5 x^{12} + 2 x^{11} - 35 x^{10} + 81 x^{9} - 66 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + (\beta_{7} - \beta_1) q^{3} + q^{4} + ( - \beta_{4} + 1) q^{5} + ( - \beta_{7} + \beta_1) q^{6} + (\beta_{12} + \beta_{2}) q^{7} - q^{8} + ( - \beta_{15} + \beta_{14} + \beta_{11} + \cdots - 1) q^{9}+ \cdots + (3 \beta_{15} - 5 \beta_{14} + \cdots - 3 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{2} + 2 q^{3} + 16 q^{4} + 8 q^{5} - 2 q^{6} + 4 q^{7} - 16 q^{8} - 6 q^{9} - 8 q^{10} + q^{11} + 2 q^{12} + 2 q^{13} - 4 q^{14} + q^{15} + 16 q^{16} + 11 q^{17} + 6 q^{18} - 2 q^{19} + 8 q^{20}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - x^{15} + 2 x^{14} - 4 x^{13} + 5 x^{12} + 2 x^{11} - 35 x^{10} + 81 x^{9} - 66 x^{8} + \cdots + 6561 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 6 \nu^{15} + 47 \nu^{14} - 161 \nu^{13} + 13 \nu^{12} - 287 \nu^{11} + 1486 \nu^{10} - 1109 \nu^{9} + \cdots - 188811 ) / 43740 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 193 \nu^{15} + 520 \nu^{14} - 2882 \nu^{13} + 5890 \nu^{12} - 14819 \nu^{11} + 17755 \nu^{10} + \cdots - 448335 ) / 787320 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 119 \nu^{15} + 1900 \nu^{14} + 586 \nu^{13} + 1870 \nu^{12} - 22943 \nu^{11} + 10315 \nu^{10} + \cdots + 3881925 ) / 787320 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 53 \nu^{15} - 173 \nu^{14} + 37 \nu^{13} - 317 \nu^{12} + 1474 \nu^{11} - 899 \nu^{10} + \cdots - 39366 ) / 131220 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 92 \nu^{15} + 341 \nu^{14} - 208 \nu^{13} + 209 \nu^{12} - 736 \nu^{11} - 2242 \nu^{10} + \cdots + 428652 ) / 196830 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 349 \nu^{15} - 532 \nu^{14} + 1106 \nu^{13} - 718 \nu^{12} + 767 \nu^{11} - 12511 \nu^{10} + \cdots + 3833811 ) / 787320 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - \nu^{15} + \nu^{14} - 2 \nu^{13} + 4 \nu^{12} - 5 \nu^{11} - 2 \nu^{10} + 35 \nu^{9} - 81 \nu^{8} + \cdots + 2187 ) / 2187 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 247 \nu^{15} + 1105 \nu^{14} - 3143 \nu^{13} + 3145 \nu^{12} - 7466 \nu^{11} + 20005 \nu^{10} + \cdots - 2777490 ) / 393660 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 229 \nu^{15} - 385 \nu^{14} - 349 \nu^{13} - 1345 \nu^{12} + 32 \nu^{11} + 4205 \nu^{10} + \cdots - 174960 ) / 393660 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 727 \nu^{15} + 982 \nu^{14} - 4148 \nu^{13} + 9448 \nu^{12} - 3971 \nu^{11} - 899 \nu^{10} + \cdots + 234009 ) / 787320 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 619 \nu^{15} - 1520 \nu^{14} + 514 \nu^{13} + 6550 \nu^{12} + 4903 \nu^{11} - 935 \nu^{10} + \cdots - 2219805 ) / 787320 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 503 \nu^{15} + 905 \nu^{14} + 1193 \nu^{13} - 55 \nu^{12} + 4346 \nu^{11} - 24115 \nu^{10} + \cdots + 3171150 ) / 393660 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 499 \nu^{15} - 367 \nu^{14} + 1091 \nu^{13} - 3523 \nu^{12} + 5522 \nu^{11} - 7801 \nu^{10} + \cdots + 1570266 ) / 393660 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 1291 \nu^{15} - 88 \nu^{14} - 286 \nu^{13} - 2902 \nu^{12} - 11947 \nu^{11} + 33671 \nu^{10} + \cdots - 640791 ) / 787320 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 376 \nu^{15} - 883 \nu^{14} + 269 \nu^{13} - 1717 \nu^{12} + 3413 \nu^{11} + 3176 \nu^{10} + \cdots - 968841 ) / 196830 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( - \beta_{15} + \beta_{14} - \beta_{13} + \beta_{10} + 2 \beta_{9} - 2 \beta_{8} - 3 \beta_{7} + \cdots + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - 2 \beta_{15} - \beta_{14} + \beta_{13} - \beta_{10} + \beta_{9} + 2 \beta_{8} + \beta_{6} - 4 \beta_{5} + \cdots - 4 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - \beta_{15} - 5 \beta_{14} + 5 \beta_{13} - 6 \beta_{12} + \beta_{10} - \beta_{9} + \beta_{8} + \cdots + 7 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{15} - \beta_{14} - 5 \beta_{13} + 3 \beta_{12} - \beta_{10} + \beta_{9} + 2 \beta_{8} - 3 \beta_{7} + \cdots - 7 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 7 \beta_{15} - 2 \beta_{14} - \beta_{13} - 9 \beta_{12} - 6 \beta_{11} - 2 \beta_{10} - 10 \beta_{9} + \cdots - 23 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 2 \beta_{15} - 22 \beta_{14} + \beta_{13} - 12 \beta_{12} - 18 \beta_{11} - 4 \beta_{10} - 23 \beta_{9} + \cdots + 32 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 40 \beta_{15} + 37 \beta_{14} + 2 \beta_{13} - 21 \beta_{12} + 15 \beta_{11} - 5 \beta_{10} + \cdots - 26 ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 23 \beta_{15} + 47 \beta_{14} + 25 \beta_{13} + 27 \beta_{12} + 36 \beta_{11} - 52 \beta_{10} + \cdots - 163 ) / 3 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 80 \beta_{15} - 59 \beta_{14} + 95 \beta_{13} - 60 \beta_{12} + 37 \beta_{10} - 55 \beta_{9} + 28 \beta_{8} + \cdots + 97 ) / 3 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 82 \beta_{15} + 197 \beta_{14} - 32 \beta_{13} + 147 \beta_{12} + 171 \beta_{11} - 91 \beta_{10} + \cdots + 101 ) / 3 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 106 \beta_{15} + 520 \beta_{14} + 8 \beta_{13} + 117 \beta_{12} + 228 \beta_{11} + 52 \beta_{10} + \cdots - 59 ) / 3 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( 232 \beta_{15} - 4 \beta_{14} - 8 \beta_{13} + 483 \beta_{12} + 18 \beta_{11} + 482 \beta_{10} + \cdots + 743 ) / 3 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 598 \beta_{15} + 478 \beta_{14} + 929 \beta_{13} - 435 \beta_{12} + 1032 \beta_{11} + 157 \beta_{10} + \cdots + 532 ) / 3 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 32 \beta_{15} + 713 \beta_{14} + 934 \beta_{13} + 1575 \beta_{12} + 1368 \beta_{11} - 403 \beta_{10} + \cdots - 2152 ) / 3 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 2627 \beta_{15} - 2318 \beta_{14} + 617 \beta_{13} + 174 \beta_{12} - 1548 \beta_{11} + 3871 \beta_{10} + \cdots - 1532 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(-\beta_{4}\) \(-\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
121.1
−0.579249 1.63232i
0.702194 1.58333i
−1.73198 0.0153002i
1.52536 0.820531i
−1.03843 + 1.38624i
−0.803168 + 1.53458i
1.67659 + 0.434811i
0.748691 + 1.56188i
−0.579249 + 1.63232i
0.702194 + 1.58333i
−1.73198 + 0.0153002i
1.52536 + 0.820531i
−1.03843 1.38624i
−0.803168 1.53458i
1.67659 0.434811i
0.748691 1.56188i
−1.00000 −1.70326 + 0.314515i 1.00000 0.500000 + 0.866025i 1.70326 0.314515i 2.48140 + 0.917950i −1.00000 2.80216 1.07140i −0.500000 0.866025i
121.2 −1.00000 −1.02010 + 1.39978i 1.00000 0.500000 + 0.866025i 1.02010 1.39978i −2.52336 + 0.795395i −1.00000 −0.918776 2.85585i −0.500000 0.866025i
121.3 −1.00000 −0.879242 1.49229i 1.00000 0.500000 + 0.866025i 0.879242 + 1.49229i 2.58337 0.571125i −1.00000 −1.45387 + 2.62417i −0.500000 0.866025i
121.4 −1.00000 0.0520808 + 1.73127i 1.00000 0.500000 + 0.866025i −0.0520808 1.73127i 0.226513 + 2.63604i −1.00000 −2.99458 + 0.180332i −0.500000 0.866025i
121.5 −1.00000 0.681302 1.59243i 1.00000 0.500000 + 0.866025i −0.681302 + 1.59243i −1.52280 + 2.16358i −1.00000 −2.07165 2.16985i −0.500000 0.866025i
121.6 −1.00000 0.927397 1.46285i 1.00000 0.500000 + 0.866025i −0.927397 + 1.46285i 0.832221 2.51146i −1.00000 −1.27987 2.71329i −0.500000 0.866025i
121.7 −1.00000 1.21485 + 1.23456i 1.00000 0.500000 + 0.866025i −1.21485 1.23456i −1.09594 2.40809i −1.00000 −0.0482768 + 2.99961i −0.500000 0.866025i
121.8 −1.00000 1.72697 0.132553i 1.00000 0.500000 + 0.866025i −1.72697 + 0.132553i 1.01860 + 2.44181i −1.00000 2.96486 0.457832i −0.500000 0.866025i
151.1 −1.00000 −1.70326 0.314515i 1.00000 0.500000 0.866025i 1.70326 + 0.314515i 2.48140 0.917950i −1.00000 2.80216 + 1.07140i −0.500000 + 0.866025i
151.2 −1.00000 −1.02010 1.39978i 1.00000 0.500000 0.866025i 1.02010 + 1.39978i −2.52336 0.795395i −1.00000 −0.918776 + 2.85585i −0.500000 + 0.866025i
151.3 −1.00000 −0.879242 + 1.49229i 1.00000 0.500000 0.866025i 0.879242 1.49229i 2.58337 + 0.571125i −1.00000 −1.45387 2.62417i −0.500000 + 0.866025i
151.4 −1.00000 0.0520808 1.73127i 1.00000 0.500000 0.866025i −0.0520808 + 1.73127i 0.226513 2.63604i −1.00000 −2.99458 0.180332i −0.500000 + 0.866025i
151.5 −1.00000 0.681302 + 1.59243i 1.00000 0.500000 0.866025i −0.681302 1.59243i −1.52280 2.16358i −1.00000 −2.07165 + 2.16985i −0.500000 + 0.866025i
151.6 −1.00000 0.927397 + 1.46285i 1.00000 0.500000 0.866025i −0.927397 1.46285i 0.832221 + 2.51146i −1.00000 −1.27987 + 2.71329i −0.500000 + 0.866025i
151.7 −1.00000 1.21485 1.23456i 1.00000 0.500000 0.866025i −1.21485 + 1.23456i −1.09594 + 2.40809i −1.00000 −0.0482768 2.99961i −0.500000 + 0.866025i
151.8 −1.00000 1.72697 + 0.132553i 1.00000 0.500000 0.866025i −1.72697 0.132553i 1.01860 2.44181i −1.00000 2.96486 + 0.457832i −0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 121.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 630.2.i.i 16
3.b odd 2 1 1890.2.i.i 16
7.c even 3 1 630.2.l.i yes 16
9.c even 3 1 630.2.l.i yes 16
9.d odd 6 1 1890.2.l.i 16
21.h odd 6 1 1890.2.l.i 16
63.h even 3 1 inner 630.2.i.i 16
63.j odd 6 1 1890.2.i.i 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
630.2.i.i 16 1.a even 1 1 trivial
630.2.i.i 16 63.h even 3 1 inner
630.2.l.i yes 16 7.c even 3 1
630.2.l.i yes 16 9.c even 3 1
1890.2.i.i 16 3.b odd 2 1
1890.2.i.i 16 63.j odd 6 1
1890.2.l.i 16 9.d odd 6 1
1890.2.l.i 16 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(630, [\chi])\):

\( T_{11}^{16} - T_{11}^{15} + 53 T_{11}^{14} + 116 T_{11}^{13} + 2018 T_{11}^{12} + 4688 T_{11}^{11} + \cdots + 2916 \) Copy content Toggle raw display
\( T_{13}^{16} - 2 T_{13}^{15} + 54 T_{13}^{14} - 8 T_{13}^{13} + 1834 T_{13}^{12} + 477 T_{13}^{11} + \cdots + 2298256 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{16} \) Copy content Toggle raw display
$3$ \( T^{16} - 2 T^{15} + \cdots + 6561 \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{8} \) Copy content Toggle raw display
$7$ \( T^{16} - 4 T^{15} + \cdots + 5764801 \) Copy content Toggle raw display
$11$ \( T^{16} - T^{15} + \cdots + 2916 \) Copy content Toggle raw display
$13$ \( T^{16} - 2 T^{15} + \cdots + 2298256 \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots + 8707129344 \) Copy content Toggle raw display
$19$ \( T^{16} + \cdots + 1174158756 \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 927567936 \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots + 17639292969 \) Copy content Toggle raw display
$31$ \( (T^{8} - 15 T^{7} + \cdots + 27294)^{2} \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots + 147622500 \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 86812992387801 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 285914281 \) Copy content Toggle raw display
$47$ \( (T^{8} - 5 T^{7} + \cdots - 423063)^{2} \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 1238515248996 \) Copy content Toggle raw display
$59$ \( (T^{8} + T^{7} - 155 T^{6} + \cdots + 1458)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} - 27 T^{7} + \cdots - 502368)^{2} \) Copy content Toggle raw display
$67$ \( (T^{8} - 10 T^{7} + \cdots + 40406508)^{2} \) Copy content Toggle raw display
$71$ \( (T^{8} + 19 T^{7} + \cdots - 7422678)^{2} \) Copy content Toggle raw display
$73$ \( T^{16} + 8 T^{15} + \cdots + 2143296 \) Copy content Toggle raw display
$79$ \( (T^{8} - 25 T^{7} + \cdots - 406534)^{2} \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 2857962683601 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 99588211776 \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 1545178274704 \) Copy content Toggle raw display
show more
show less