L(s) = 1 | − 2-s + (0.0520 − 1.73i)3-s + 4-s + (0.5 − 0.866i)5-s + (−0.0520 + 1.73i)6-s + (0.226 − 2.63i)7-s − 8-s + (−2.99 − 0.180i)9-s + (−0.5 + 0.866i)10-s + (−2.57 − 4.45i)11-s + (0.0520 − 1.73i)12-s + (1.62 + 2.81i)13-s + (−0.226 + 2.63i)14-s + (−1.47 − 0.910i)15-s + 16-s + (−2.89 + 5.01i)17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.0300 − 0.999i)3-s + 0.5·4-s + (0.223 − 0.387i)5-s + (−0.0212 + 0.706i)6-s + (0.0856 − 0.996i)7-s − 0.353·8-s + (−0.998 − 0.0601i)9-s + (−0.158 + 0.273i)10-s + (−0.775 − 1.34i)11-s + (0.0150 − 0.499i)12-s + (0.450 + 0.779i)13-s + (−0.0605 + 0.704i)14-s + (−0.380 − 0.235i)15-s + 0.250·16-s + (−0.702 + 1.21i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 + 0.139i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.990 + 0.139i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0520313 - 0.743021i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0520313 - 0.743021i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + (-0.0520 + 1.73i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.226 + 2.63i)T \) |
good | 11 | \( 1 + (2.57 + 4.45i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.62 - 2.81i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2.89 - 5.01i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.34 + 4.06i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.33 + 2.31i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.227 + 0.394i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 7.14T + 31T^{2} \) |
| 37 | \( 1 + (-2.00 - 3.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.71 + 6.42i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.80 - 3.12i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 3.15T + 47T^{2} \) |
| 53 | \( 1 + (1.63 - 2.82i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 11.1T + 59T^{2} \) |
| 61 | \( 1 - 5.99T + 61T^{2} \) |
| 67 | \( 1 + 11.7T + 67T^{2} \) |
| 71 | \( 1 + 4.38T + 71T^{2} \) |
| 73 | \( 1 + (-6.94 + 12.0i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 2.95T + 79T^{2} \) |
| 83 | \( 1 + (-6.13 + 10.6i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (4.83 + 8.36i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.91 + 6.78i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37782403566703867192471437547, −8.928575420481612075140675955261, −8.474463934309499359584352340524, −7.69943779808146862889903482360, −6.57168048470446678511042706421, −6.13301856755540501086194312419, −4.60851409487746359945791476466, −3.10168840477517416971764563601, −1.74492879988632525760616594683, −0.48967435316127325420660519437,
2.22940446256406910489669197778, 3.09551448178640134109120523131, 4.67259988780745749858699721357, 5.51955034829734599438611257499, 6.52968911226036577755446030773, 7.77131475701518352519224205686, 8.520286283305729574271514064106, 9.497355588483840981358965791470, 9.979422486370781059093671693161, 10.76888515532100329050403365301