L(s) = 1 | − 2-s + (0.0520 − 1.73i)3-s + 4-s + (0.5 − 0.866i)5-s + (−0.0520 + 1.73i)6-s + (0.226 − 2.63i)7-s − 8-s + (−2.99 − 0.180i)9-s + (−0.5 + 0.866i)10-s + (−2.57 − 4.45i)11-s + (0.0520 − 1.73i)12-s + (1.62 + 2.81i)13-s + (−0.226 + 2.63i)14-s + (−1.47 − 0.910i)15-s + 16-s + (−2.89 + 5.01i)17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.0300 − 0.999i)3-s + 0.5·4-s + (0.223 − 0.387i)5-s + (−0.0212 + 0.706i)6-s + (0.0856 − 0.996i)7-s − 0.353·8-s + (−0.998 − 0.0601i)9-s + (−0.158 + 0.273i)10-s + (−0.775 − 1.34i)11-s + (0.0150 − 0.499i)12-s + (0.450 + 0.779i)13-s + (−0.0605 + 0.704i)14-s + (−0.380 − 0.235i)15-s + 0.250·16-s + (−0.702 + 1.21i)17-s + ⋯ |
Λ(s)=(=(630s/2ΓC(s)L(s)(−0.990+0.139i)Λ(2−s)
Λ(s)=(=(630s/2ΓC(s+1/2)L(s)(−0.990+0.139i)Λ(1−s)
Degree: |
2 |
Conductor: |
630
= 2⋅32⋅5⋅7
|
Sign: |
−0.990+0.139i
|
Analytic conductor: |
5.03057 |
Root analytic conductor: |
2.24289 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ630(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 630, ( :1/2), −0.990+0.139i)
|
Particular Values
L(1) |
≈ |
0.0520313−0.743021i |
L(21) |
≈ |
0.0520313−0.743021i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+(−0.0520+1.73i)T |
| 5 | 1+(−0.5+0.866i)T |
| 7 | 1+(−0.226+2.63i)T |
good | 11 | 1+(2.57+4.45i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−1.62−2.81i)T+(−6.5+11.2i)T2 |
| 17 | 1+(2.89−5.01i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.34+4.06i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−1.33+2.31i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−0.227+0.394i)T+(−14.5−25.1i)T2 |
| 31 | 1−7.14T+31T2 |
| 37 | 1+(−2.00−3.46i)T+(−18.5+32.0i)T2 |
| 41 | 1+(3.71+6.42i)T+(−20.5+35.5i)T2 |
| 43 | 1+(1.80−3.12i)T+(−21.5−37.2i)T2 |
| 47 | 1+3.15T+47T2 |
| 53 | 1+(1.63−2.82i)T+(−26.5−45.8i)T2 |
| 59 | 1+11.1T+59T2 |
| 61 | 1−5.99T+61T2 |
| 67 | 1+11.7T+67T2 |
| 71 | 1+4.38T+71T2 |
| 73 | 1+(−6.94+12.0i)T+(−36.5−63.2i)T2 |
| 79 | 1−2.95T+79T2 |
| 83 | 1+(−6.13+10.6i)T+(−41.5−71.8i)T2 |
| 89 | 1+(4.83+8.36i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−3.91+6.78i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37782403566703867192471437547, −8.928575420481612075140675955261, −8.474463934309499359584352340524, −7.69943779808146862889903482360, −6.57168048470446678511042706421, −6.13301856755540501086194312419, −4.60851409487746359945791476466, −3.10168840477517416971764563601, −1.74492879988632525760616594683, −0.48967435316127325420660519437,
2.22940446256406910489669197778, 3.09551448178640134109120523131, 4.67259988780745749858699721357, 5.51955034829734599438611257499, 6.52968911226036577755446030773, 7.77131475701518352519224205686, 8.520286283305729574271514064106, 9.497355588483840981358965791470, 9.979422486370781059093671693161, 10.76888515532100329050403365301