L(s) = 1 | + (−1.41 + 1.41i)2-s − 4.00i·4-s + (−10.3 + 4.33i)5-s + (4.94 + 4.94i)7-s + (5.65 + 5.65i)8-s + (8.44 − 20.7i)10-s − 8.72i·11-s + (3.39 − 3.39i)13-s − 14.0·14-s − 16.0·16-s + (−35.6 + 35.6i)17-s − 87.4i·19-s + (17.3 + 41.2i)20-s + (12.3 + 12.3i)22-s + (−8.19 − 8.19i)23-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (−0.921 + 0.387i)5-s + (0.267 + 0.267i)7-s + (0.250 + 0.250i)8-s + (0.267 − 0.654i)10-s − 0.239i·11-s + (0.0724 − 0.0724i)13-s − 0.267·14-s − 0.250·16-s + (−0.508 + 0.508i)17-s − 1.05i·19-s + (0.193 + 0.460i)20-s + (0.119 + 0.119i)22-s + (−0.0743 − 0.0743i)23-s + ⋯ |
Λ(s)=(=(630s/2ΓC(s)L(s)(0.943−0.329i)Λ(4−s)
Λ(s)=(=(630s/2ΓC(s+3/2)L(s)(0.943−0.329i)Λ(1−s)
Degree: |
2 |
Conductor: |
630
= 2⋅32⋅5⋅7
|
Sign: |
0.943−0.329i
|
Analytic conductor: |
37.1712 |
Root analytic conductor: |
6.09681 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ630(197,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 630, ( :3/2), 0.943−0.329i)
|
Particular Values
L(2) |
≈ |
1.023491240 |
L(21) |
≈ |
1.023491240 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.41−1.41i)T |
| 3 | 1 |
| 5 | 1+(10.3−4.33i)T |
| 7 | 1+(−4.94−4.94i)T |
good | 11 | 1+8.72iT−1.33e3T2 |
| 13 | 1+(−3.39+3.39i)T−2.19e3iT2 |
| 17 | 1+(35.6−35.6i)T−4.91e3iT2 |
| 19 | 1+87.4iT−6.85e3T2 |
| 23 | 1+(8.19+8.19i)T+1.21e4iT2 |
| 29 | 1+199.T+2.43e4T2 |
| 31 | 1+21.6T+2.97e4T2 |
| 37 | 1+(−6.63−6.63i)T+5.06e4iT2 |
| 41 | 1−95.4iT−6.89e4T2 |
| 43 | 1+(−144.+144.i)T−7.95e4iT2 |
| 47 | 1+(−30.7+30.7i)T−1.03e5iT2 |
| 53 | 1+(−221.−221.i)T+1.48e5iT2 |
| 59 | 1−531.T+2.05e5T2 |
| 61 | 1−578.T+2.26e5T2 |
| 67 | 1+(−222.−222.i)T+3.00e5iT2 |
| 71 | 1+134.iT−3.57e5T2 |
| 73 | 1+(−111.+111.i)T−3.89e5iT2 |
| 79 | 1+1.23e3iT−4.93e5T2 |
| 83 | 1+(−336.−336.i)T+5.71e5iT2 |
| 89 | 1−509.T+7.04e5T2 |
| 97 | 1+(−408.−408.i)T+9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28113301201416396577629763657, −9.099830805426542172251693750295, −8.491760111781366537566174424597, −7.58632926104814931003367874539, −6.88412095771203095684512733119, −5.86648161581925251700144462298, −4.74232824419703786093163969366, −3.65428122616987019791839751397, −2.26615890543214910229792300003, −0.56672771322763028923409433159,
0.71420673217140635305481891297, 2.03884604510448222768970369539, 3.53480297453383336763306805469, 4.28623338792144656192041694261, 5.43182488335245400985163980621, 6.91593368509429567592984612920, 7.68268795014470296864304466564, 8.418929445375514823264728874810, 9.274012658655828097823452338554, 10.15726688517056861065334902044