Properties

Label 630.4.m.b
Level 630630
Weight 44
Character orbit 630.m
Analytic conductor 37.17137.171
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,4,Mod(197,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.197");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 630=23257 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 630.m (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 37.171203303637.1712033036
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(i)\Q(i)
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x168x1562x14+184x13+5442x12+68448x11+1829094x10++101023536964 x^{16} - 8 x^{15} - 62 x^{14} + 184 x^{13} + 5442 x^{12} + 68448 x^{11} + 1829094 x^{10} + \cdots + 101023536964 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 25 2^{5}
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2β4q2+4β3q4+(β13β4+β2+3)q5+7β2q7+8β2q8+(6β4+2β3+2)q10+(β15β14+β13+2)q11+98β2q98+O(q100) q - 2 \beta_{4} q^{2} + 4 \beta_{3} q^{4} + (\beta_{13} - \beta_{4} + \beta_{2} + 3) q^{5} + 7 \beta_{2} q^{7} + 8 \beta_{2} q^{8} + ( - 6 \beta_{4} + 2 \beta_{3} + \cdots - 2) q^{10} + (\beta_{15} - \beta_{14} + \beta_{13} + \cdots - 2) q^{11}+ \cdots - 98 \beta_{2} q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+44q524q10212q13224q14256q1632q1732q20+72q22+128q23268q25232q29200q31112q35+900q37+368q38128q40+2668q97+O(q100) 16 q + 44 q^{5} - 24 q^{10} - 212 q^{13} - 224 q^{14} - 256 q^{16} - 32 q^{17} - 32 q^{20} + 72 q^{22} + 128 q^{23} - 268 q^{25} - 232 q^{29} - 200 q^{31} - 112 q^{35} + 900 q^{37} + 368 q^{38} - 128 q^{40}+ \cdots - 2668 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x168x1562x14+184x13+5442x12+68448x11+1829094x10++101023536964 x^{16} - 8 x^{15} - 62 x^{14} + 184 x^{13} + 5442 x^{12} + 68448 x^{11} + 1829094 x^{10} + \cdots + 101023536964 : Copy content Toggle raw display

β1\beta_{1}== (39 ⁣ ⁣18ν15+34 ⁣ ⁣94)/29 ⁣ ⁣85 ( 39\!\cdots\!18 \nu^{15} + \cdots - 34\!\cdots\!94 ) / 29\!\cdots\!85 Copy content Toggle raw display
β2\beta_{2}== (79 ⁣ ⁣38ν15+64 ⁣ ⁣66)/58 ⁣ ⁣70 ( - 79\!\cdots\!38 \nu^{15} + \cdots - 64\!\cdots\!66 ) / 58\!\cdots\!70 Copy content Toggle raw display
β3\beta_{3}== (26 ⁣ ⁣16ν15+70 ⁣ ⁣26)/11 ⁣ ⁣98 ( - 26\!\cdots\!16 \nu^{15} + \cdots - 70\!\cdots\!26 ) / 11\!\cdots\!98 Copy content Toggle raw display
β4\beta_{4}== (14 ⁣ ⁣91ν15+13 ⁣ ⁣98)/58 ⁣ ⁣70 ( 14\!\cdots\!91 \nu^{15} + \cdots - 13\!\cdots\!98 ) / 58\!\cdots\!70 Copy content Toggle raw display
β5\beta_{5}== (10 ⁣ ⁣34ν15+32 ⁣ ⁣53)/29 ⁣ ⁣85 ( - 10\!\cdots\!34 \nu^{15} + \cdots - 32\!\cdots\!53 ) / 29\!\cdots\!85 Copy content Toggle raw display
β6\beta_{6}== (39 ⁣ ⁣63ν15++22 ⁣ ⁣64)/29 ⁣ ⁣85 ( - 39\!\cdots\!63 \nu^{15} + \cdots + 22\!\cdots\!64 ) / 29\!\cdots\!85 Copy content Toggle raw display
β7\beta_{7}== (41 ⁣ ⁣54ν15+18 ⁣ ⁣92)/29 ⁣ ⁣85 ( 41\!\cdots\!54 \nu^{15} + \cdots - 18\!\cdots\!92 ) / 29\!\cdots\!85 Copy content Toggle raw display
β8\beta_{8}== (37 ⁣ ⁣66ν15+75 ⁣ ⁣12)/25 ⁣ ⁣90 ( 37\!\cdots\!66 \nu^{15} + \cdots - 75\!\cdots\!12 ) / 25\!\cdots\!90 Copy content Toggle raw display
β9\beta_{9}== (38 ⁣ ⁣06ν15+31 ⁣ ⁣78)/25 ⁣ ⁣90 ( - 38\!\cdots\!06 \nu^{15} + \cdots - 31\!\cdots\!78 ) / 25\!\cdots\!90 Copy content Toggle raw display
β10\beta_{10}== (11 ⁣ ⁣46ν15+10 ⁣ ⁣62)/58 ⁣ ⁣70 ( - 11\!\cdots\!46 \nu^{15} + \cdots - 10\!\cdots\!62 ) / 58\!\cdots\!70 Copy content Toggle raw display
β11\beta_{11}== (69 ⁣ ⁣79ν15+71 ⁣ ⁣78)/29 ⁣ ⁣85 ( - 69\!\cdots\!79 \nu^{15} + \cdots - 71\!\cdots\!78 ) / 29\!\cdots\!85 Copy content Toggle raw display
β12\beta_{12}== (14 ⁣ ⁣00ν15++39 ⁣ ⁣34)/58 ⁣ ⁣70 ( 14\!\cdots\!00 \nu^{15} + \cdots + 39\!\cdots\!34 ) / 58\!\cdots\!70 Copy content Toggle raw display
β13\beta_{13}== (36 ⁣ ⁣14ν15+13 ⁣ ⁣88)/12 ⁣ ⁣95 ( - 36\!\cdots\!14 \nu^{15} + \cdots - 13\!\cdots\!88 ) / 12\!\cdots\!95 Copy content Toggle raw display
β14\beta_{14}== (17 ⁣ ⁣67ν15+15 ⁣ ⁣42)/58 ⁣ ⁣70 ( 17\!\cdots\!67 \nu^{15} + \cdots - 15\!\cdots\!42 ) / 58\!\cdots\!70 Copy content Toggle raw display
β15\beta_{15}== (34 ⁣ ⁣00ν15++10 ⁣ ⁣86)/11 ⁣ ⁣74 ( 34\!\cdots\!00 \nu^{15} + \cdots + 10\!\cdots\!86 ) / 11\!\cdots\!74 Copy content Toggle raw display
ν\nu== (β15+β13+β7+β6+β2+2)/2 ( \beta_{15} + \beta_{13} + \beta_{7} + \beta_{6} + \beta_{2} + 2 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (2β157β135β12+2β115β1010β9+5β8++28)/2 ( - 2 \beta_{15} - 7 \beta_{13} - 5 \beta_{12} + 2 \beta_{11} - 5 \beta_{10} - 10 \beta_{9} + 5 \beta_{8} + \cdots + 28 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (44β15+15β14+44β1315β12134β11+156β10++143)/2 ( 44 \beta_{15} + 15 \beta_{14} + 44 \beta_{13} - 15 \beta_{12} - 134 \beta_{11} + 156 \beta_{10} + \cdots + 143 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (1371β15+1180β14701β132030β12+1371β11701β10++847)/2 ( - 1371 \beta_{15} + 1180 \beta_{14} - 701 \beta_{13} - 2030 \beta_{12} + 1371 \beta_{11} - 701 \beta_{10} + \cdots + 847 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (23143β15+2035β14+27891β132035β1214521β11+50698)/2 ( 23143 \beta_{15} + 2035 \beta_{14} + 27891 \beta_{13} - 2035 \beta_{12} - 14521 \beta_{11} + \cdots - 50698 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== 91888β15+196765β14115611β13120655β12+92802β11+1011666 - 91888 \beta_{15} + 196765 \beta_{14} - 115611 \beta_{13} - 120655 \beta_{12} + 92802 \beta_{11} + \cdots - 1011666 Copy content Toggle raw display
ν7\nu^{7}== 912491β15+45705β14+912491β13183810β122688788β11++7887147 - 912491 \beta_{15} + 45705 \beta_{14} + 912491 \beta_{13} - 183810 \beta_{12} - 2688788 \beta_{11} + \cdots + 7887147 Copy content Toggle raw display
ν8\nu^{8}== 22908453β15+24172905β14+17995361β13+22908453β1117995361β10+494895365 22908453 \beta_{15} + 24172905 \beta_{14} + 17995361 \beta_{13} + 22908453 \beta_{11} - 17995361 \beta_{10} + \cdots - 494895365 Copy content Toggle raw display
ν9\nu^{9}== 536480265β15+17626360β14421627223β13+17626360β12++1756058866 - 536480265 \beta_{15} + 17626360 \beta_{14} - 421627223 \beta_{13} + 17626360 \beta_{12} + \cdots + 1756058866 Copy content Toggle raw display
ν10\nu^{10}== 5306434339β15+6204869983β13+4837216655β123458646562β11+48993320136 5306434339 \beta_{15} + 6204869983 \beta_{13} + 4837216655 \beta_{12} - 3458646562 \beta_{11} + \cdots - 48993320136 Copy content Toggle raw display
ν11\nu^{11}== 96655931598β15+163524670β1496655931598β1311166724155β12++18719650177 - 96655931598 \beta_{15} + 163524670 \beta_{14} - 96655931598 \beta_{13} - 11166724155 \beta_{12} + \cdots + 18719650177 Copy content Toggle raw display
ν12\nu^{12}== 1323776563456β15970605670675β14+1209717393658β13+1477765755660β12+667186206912 1323776563456 \beta_{15} - 970605670675 \beta_{14} + 1209717393658 \beta_{13} + 1477765755660 \beta_{12} + \cdots - 667186206912 Copy content Toggle raw display
ν13\nu^{13}== 16816369019597β15+3515660482315β1422308153830147β13+5330036191529 - 16816369019597 \beta_{15} + 3515660482315 \beta_{14} - 22308153830147 \beta_{13} + \cdots - 5330036191529 Copy content Toggle raw display
ν14\nu^{14}== 130043565677754β15293454760138300β14+185752329037981β13++20 ⁣ ⁣32 130043565677754 \beta_{15} - 293454760138300 \beta_{14} + 185752329037981 \beta_{13} + \cdots + 20\!\cdots\!32 Copy content Toggle raw display
ν15\nu^{15}== 12 ⁣ ⁣08β15+958208597290185β14+22 ⁣ ⁣47 12\!\cdots\!08 \beta_{15} + 958208597290185 \beta_{14} + \cdots - 22\!\cdots\!47 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/630Z)×\left(\mathbb{Z}/630\mathbb{Z}\right)^\times.

nn 127127 281281 451451
χ(n)\chi(n) β3-\beta_{3} 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
197.1
−1.41968 0.588052i
−13.4677 5.57851i
12.5082 + 5.18107i
5.08631 + 2.10682i
−4.87117 + 11.7600i
−0.0858842 + 0.207343i
3.04417 7.34926i
3.20578 7.73944i
−1.41968 + 0.588052i
−13.4677 + 5.57851i
12.5082 5.18107i
5.08631 2.10682i
−4.87117 11.7600i
−0.0858842 0.207343i
3.04417 + 7.34926i
3.20578 + 7.73944i
−1.41421 + 1.41421i 0 4.00000i −10.3056 + 4.33526i 0 4.94975 + 4.94975i 5.65685 + 5.65685i 0 8.44335 20.7053i
197.2 −1.41421 + 1.41421i 0 4.00000i 2.41767 10.9158i 0 4.94975 + 4.94975i 5.65685 + 5.65685i 0 12.0182 + 18.8564i
197.3 −1.41421 + 1.41421i 0 4.00000i 7.03196 + 8.69204i 0 4.94975 + 4.94975i 5.65685 + 5.65685i 0 −22.2371 2.34770i
197.4 −1.41421 + 1.41421i 0 4.00000i 11.1489 + 0.838262i 0 4.94975 + 4.94975i 5.65685 + 5.65685i 0 −16.9524 + 14.5814i
197.5 1.41421 1.41421i 0 4.00000i −2.20200 + 10.9614i 0 −4.94975 4.94975i −5.65685 5.65685i 0 12.3876 + 18.6158i
197.6 1.41421 1.41421i 0 4.00000i −1.74600 11.0432i 0 −4.94975 4.94975i −5.65685 5.65685i 0 −18.0866 13.1482i
197.7 1.41421 1.41421i 0 4.00000i 4.93229 10.0336i 0 −4.94975 4.94975i −5.65685 5.65685i 0 −7.21430 21.1649i
197.8 1.41421 1.41421i 0 4.00000i 10.7228 + 3.16564i 0 −4.94975 4.94975i −5.65685 5.65685i 0 19.6412 10.6875i
323.1 −1.41421 1.41421i 0 4.00000i −10.3056 4.33526i 0 4.94975 4.94975i 5.65685 5.65685i 0 8.44335 + 20.7053i
323.2 −1.41421 1.41421i 0 4.00000i 2.41767 + 10.9158i 0 4.94975 4.94975i 5.65685 5.65685i 0 12.0182 18.8564i
323.3 −1.41421 1.41421i 0 4.00000i 7.03196 8.69204i 0 4.94975 4.94975i 5.65685 5.65685i 0 −22.2371 + 2.34770i
323.4 −1.41421 1.41421i 0 4.00000i 11.1489 0.838262i 0 4.94975 4.94975i 5.65685 5.65685i 0 −16.9524 14.5814i
323.5 1.41421 + 1.41421i 0 4.00000i −2.20200 10.9614i 0 −4.94975 + 4.94975i −5.65685 + 5.65685i 0 12.3876 18.6158i
323.6 1.41421 + 1.41421i 0 4.00000i −1.74600 + 11.0432i 0 −4.94975 + 4.94975i −5.65685 + 5.65685i 0 −18.0866 + 13.1482i
323.7 1.41421 + 1.41421i 0 4.00000i 4.93229 + 10.0336i 0 −4.94975 + 4.94975i −5.65685 + 5.65685i 0 −7.21430 + 21.1649i
323.8 1.41421 + 1.41421i 0 4.00000i 10.7228 3.16564i 0 −4.94975 + 4.94975i −5.65685 + 5.65685i 0 19.6412 + 10.6875i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 197.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 630.4.m.b yes 16
3.b odd 2 1 630.4.m.a 16
5.c odd 4 1 630.4.m.a 16
15.e even 4 1 inner 630.4.m.b yes 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
630.4.m.a 16 3.b odd 2 1
630.4.m.a 16 5.c odd 4 1
630.4.m.b yes 16 1.a even 1 1 trivial
630.4.m.b yes 16 15.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(630,[χ])S_{4}^{\mathrm{new}}(630, [\chi]):

T1116+13420T1114+71202404T1112+188175590848T1110++52 ⁣ ⁣04 T_{11}^{16} + 13420 T_{11}^{14} + 71202404 T_{11}^{12} + 188175590848 T_{11}^{10} + \cdots + 52\!\cdots\!04 Copy content Toggle raw display
T1716+32T1715+512T171499424T1713+185601584T1712++71 ⁣ ⁣84 T_{17}^{16} + 32 T_{17}^{15} + 512 T_{17}^{14} - 99424 T_{17}^{13} + 185601584 T_{17}^{12} + \cdots + 71\!\cdots\!84 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+16)4 (T^{4} + 16)^{4} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 T16++59 ⁣ ⁣25 T^{16} + \cdots + 59\!\cdots\!25 Copy content Toggle raw display
77 (T4+2401)4 (T^{4} + 2401)^{4} Copy content Toggle raw display
1111 T16++52 ⁣ ⁣04 T^{16} + \cdots + 52\!\cdots\!04 Copy content Toggle raw display
1313 T16++14 ⁣ ⁣24 T^{16} + \cdots + 14\!\cdots\!24 Copy content Toggle raw display
1717 T16++71 ⁣ ⁣84 T^{16} + \cdots + 71\!\cdots\!84 Copy content Toggle raw display
1919 T16++19 ⁣ ⁣00 T^{16} + \cdots + 19\!\cdots\!00 Copy content Toggle raw display
2323 T16++51 ⁣ ⁣44 T^{16} + \cdots + 51\!\cdots\!44 Copy content Toggle raw display
2929 (T8+26 ⁣ ⁣44)2 (T^{8} + \cdots - 26\!\cdots\!44)^{2} Copy content Toggle raw display
3131 (T8++59 ⁣ ⁣68)2 (T^{8} + \cdots + 59\!\cdots\!68)^{2} Copy content Toggle raw display
3737 T16++34 ⁣ ⁣56 T^{16} + \cdots + 34\!\cdots\!56 Copy content Toggle raw display
4141 T16++23 ⁣ ⁣16 T^{16} + \cdots + 23\!\cdots\!16 Copy content Toggle raw display
4343 T16++24 ⁣ ⁣84 T^{16} + \cdots + 24\!\cdots\!84 Copy content Toggle raw display
4747 T16++15 ⁣ ⁣04 T^{16} + \cdots + 15\!\cdots\!04 Copy content Toggle raw display
5353 T16++96 ⁣ ⁣76 T^{16} + \cdots + 96\!\cdots\!76 Copy content Toggle raw display
5959 (T8++64 ⁣ ⁣32)2 (T^{8} + \cdots + 64\!\cdots\!32)^{2} Copy content Toggle raw display
6161 (T8+95 ⁣ ⁣32)2 (T^{8} + \cdots - 95\!\cdots\!32)^{2} Copy content Toggle raw display
6767 T16++22 ⁣ ⁣84 T^{16} + \cdots + 22\!\cdots\!84 Copy content Toggle raw display
7171 T16++27 ⁣ ⁣64 T^{16} + \cdots + 27\!\cdots\!64 Copy content Toggle raw display
7373 T16++11 ⁣ ⁣00 T^{16} + \cdots + 11\!\cdots\!00 Copy content Toggle raw display
7979 T16++36 ⁣ ⁣64 T^{16} + \cdots + 36\!\cdots\!64 Copy content Toggle raw display
8383 T16++71 ⁣ ⁣44 T^{16} + \cdots + 71\!\cdots\!44 Copy content Toggle raw display
8989 (T8++28 ⁣ ⁣88)2 (T^{8} + \cdots + 28\!\cdots\!88)^{2} Copy content Toggle raw display
9797 T16++46 ⁣ ⁣36 T^{16} + \cdots + 46\!\cdots\!36 Copy content Toggle raw display
show more
show less