Properties

Label 2-630-21.20-c5-0-16
Degree $2$
Conductor $630$
Sign $0.941 + 0.337i$
Analytic cond. $101.041$
Root an. cond. $10.0519$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4i·2-s − 16·4-s + 25·5-s + (−124. + 34.7i)7-s + 64i·8-s − 100i·10-s − 250. i·11-s + 257. i·13-s + (139. + 499. i)14-s + 256·16-s − 1.65e3·17-s + 117. i·19-s − 400·20-s − 1.00e3·22-s − 3.22e3i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 0.447·5-s + (−0.963 + 0.268i)7-s + 0.353i·8-s − 0.316i·10-s − 0.625i·11-s + 0.421i·13-s + (0.189 + 0.681i)14-s + 0.250·16-s − 1.38·17-s + 0.0748i·19-s − 0.223·20-s − 0.442·22-s − 1.27i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.941 + 0.337i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.941 + 0.337i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(630\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $0.941 + 0.337i$
Analytic conductor: \(101.041\)
Root analytic conductor: \(10.0519\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{630} (251, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 630,\ (\ :5/2),\ 0.941 + 0.337i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.367254005\)
\(L(\frac12)\) \(\approx\) \(1.367254005\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4iT \)
3 \( 1 \)
5 \( 1 - 25T \)
7 \( 1 + (124. - 34.7i)T \)
good11 \( 1 + 250. iT - 1.61e5T^{2} \)
13 \( 1 - 257. iT - 3.71e5T^{2} \)
17 \( 1 + 1.65e3T + 1.41e6T^{2} \)
19 \( 1 - 117. iT - 2.47e6T^{2} \)
23 \( 1 + 3.22e3iT - 6.43e6T^{2} \)
29 \( 1 + 1.17e3iT - 2.05e7T^{2} \)
31 \( 1 - 6.32e3iT - 2.86e7T^{2} \)
37 \( 1 - 8.37e3T + 6.93e7T^{2} \)
41 \( 1 + 1.46e4T + 1.15e8T^{2} \)
43 \( 1 + 1.58e4T + 1.47e8T^{2} \)
47 \( 1 - 1.68e4T + 2.29e8T^{2} \)
53 \( 1 + 2.33e3iT - 4.18e8T^{2} \)
59 \( 1 - 9.24e3T + 7.14e8T^{2} \)
61 \( 1 - 1.96e4iT - 8.44e8T^{2} \)
67 \( 1 - 4.67e4T + 1.35e9T^{2} \)
71 \( 1 - 3.64e4iT - 1.80e9T^{2} \)
73 \( 1 - 2.68e4iT - 2.07e9T^{2} \)
79 \( 1 + 3.75e4T + 3.07e9T^{2} \)
83 \( 1 - 9.08e4T + 3.93e9T^{2} \)
89 \( 1 - 5.77e4T + 5.58e9T^{2} \)
97 \( 1 - 2.40e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.886918674471704861385455099489, −8.941463385584470584532865873618, −8.479196659409785845044774892895, −6.85447315170971087283826960903, −6.25322849744826378424136095639, −5.09775822796191360147416774042, −4.01120916519832113066006529962, −2.92455960859360907825514124917, −2.07633582839895236067100154676, −0.64809336888673072532399766695, 0.45699149695329614440894755525, 2.02673929104209399246744308882, 3.34764216249412887105583332035, 4.42878530506830058370616263481, 5.47935412498142404858373939679, 6.40952565023545555507335236067, 7.04799819349890571031381609182, 7.999017251947045488650160390852, 9.132649324009379438817488194624, 9.666080009552955243084237801340

Graph of the $Z$-function along the critical line