L(s) = 1 | − 4i·2-s − 16·4-s + 25·5-s + (−124. + 34.7i)7-s + 64i·8-s − 100i·10-s − 250. i·11-s + 257. i·13-s + (139. + 499. i)14-s + 256·16-s − 1.65e3·17-s + 117. i·19-s − 400·20-s − 1.00e3·22-s − 3.22e3i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + 0.447·5-s + (−0.963 + 0.268i)7-s + 0.353i·8-s − 0.316i·10-s − 0.625i·11-s + 0.421i·13-s + (0.189 + 0.681i)14-s + 0.250·16-s − 1.38·17-s + 0.0748i·19-s − 0.223·20-s − 0.442·22-s − 1.27i·23-s + ⋯ |
Λ(s)=(=(630s/2ΓC(s)L(s)(0.941+0.337i)Λ(6−s)
Λ(s)=(=(630s/2ΓC(s+5/2)L(s)(0.941+0.337i)Λ(1−s)
Degree: |
2 |
Conductor: |
630
= 2⋅32⋅5⋅7
|
Sign: |
0.941+0.337i
|
Analytic conductor: |
101.041 |
Root analytic conductor: |
10.0519 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ630(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 630, ( :5/2), 0.941+0.337i)
|
Particular Values
L(3) |
≈ |
1.367254005 |
L(21) |
≈ |
1.367254005 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+4iT |
| 3 | 1 |
| 5 | 1−25T |
| 7 | 1+(124.−34.7i)T |
good | 11 | 1+250.iT−1.61e5T2 |
| 13 | 1−257.iT−3.71e5T2 |
| 17 | 1+1.65e3T+1.41e6T2 |
| 19 | 1−117.iT−2.47e6T2 |
| 23 | 1+3.22e3iT−6.43e6T2 |
| 29 | 1+1.17e3iT−2.05e7T2 |
| 31 | 1−6.32e3iT−2.86e7T2 |
| 37 | 1−8.37e3T+6.93e7T2 |
| 41 | 1+1.46e4T+1.15e8T2 |
| 43 | 1+1.58e4T+1.47e8T2 |
| 47 | 1−1.68e4T+2.29e8T2 |
| 53 | 1+2.33e3iT−4.18e8T2 |
| 59 | 1−9.24e3T+7.14e8T2 |
| 61 | 1−1.96e4iT−8.44e8T2 |
| 67 | 1−4.67e4T+1.35e9T2 |
| 71 | 1−3.64e4iT−1.80e9T2 |
| 73 | 1−2.68e4iT−2.07e9T2 |
| 79 | 1+3.75e4T+3.07e9T2 |
| 83 | 1−9.08e4T+3.93e9T2 |
| 89 | 1−5.77e4T+5.58e9T2 |
| 97 | 1−2.40e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.886918674471704861385455099489, −8.941463385584470584532865873618, −8.479196659409785845044774892895, −6.85447315170971087283826960903, −6.25322849744826378424136095639, −5.09775822796191360147416774042, −4.01120916519832113066006529962, −2.92455960859360907825514124917, −2.07633582839895236067100154676, −0.64809336888673072532399766695,
0.45699149695329614440894755525, 2.02673929104209399246744308882, 3.34764216249412887105583332035, 4.42878530506830058370616263481, 5.47935412498142404858373939679, 6.40952565023545555507335236067, 7.04799819349890571031381609182, 7.999017251947045488650160390852, 9.132649324009379438817488194624, 9.666080009552955243084237801340