Properties

Label 630.6.b.b.251.1
Level $630$
Weight $6$
Character 630.251
Analytic conductor $101.042$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,6,Mod(251,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.251");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 630.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(101.041806482\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.1
Character \(\chi\) \(=\) 630.251
Dual form 630.6.b.b.251.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} -16.0000 q^{4} +25.0000 q^{5} +(-124.893 + 34.7652i) q^{7} +64.0000i q^{8} -100.000i q^{10} -250.926i q^{11} +257.140i q^{13} +(139.061 + 499.574i) q^{14} +256.000 q^{16} -1652.74 q^{17} +117.851i q^{19} -400.000 q^{20} -1003.70 q^{22} -3228.81i q^{23} +625.000 q^{25} +1028.56 q^{26} +(1998.30 - 556.244i) q^{28} -1172.64i q^{29} +6328.52i q^{31} -1024.00i q^{32} +6610.97i q^{34} +(-3122.34 + 869.131i) q^{35} +8379.92 q^{37} +471.404 q^{38} +1600.00i q^{40} -14627.5 q^{41} -15895.7 q^{43} +4014.82i q^{44} -12915.2 q^{46} +16810.9 q^{47} +(14389.8 - 8683.90i) q^{49} -2500.00i q^{50} -4114.25i q^{52} -2337.18i q^{53} -6273.15i q^{55} +(-2224.98 - 7993.18i) q^{56} -4690.55 q^{58} +9243.24 q^{59} +19645.3i q^{61} +25314.1 q^{62} -4096.00 q^{64} +6428.51i q^{65} +46708.5 q^{67} +26443.9 q^{68} +(3476.52 + 12489.3i) q^{70} +36402.7i q^{71} +26899.4i q^{73} -33519.7i q^{74} -1885.62i q^{76} +(8723.50 + 31339.0i) q^{77} -37598.8 q^{79} +6400.00 q^{80} +58509.9i q^{82} +90834.3 q^{83} -41318.6 q^{85} +63582.8i q^{86} +16059.3 q^{88} +57741.9 q^{89} +(-8939.55 - 32115.2i) q^{91} +51660.9i q^{92} -67243.4i q^{94} +2946.27i q^{95} +24079.1i q^{97} +(-34735.6 - 57559.0i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 384 q^{4} + 600 q^{5} - 196 q^{7} + 6144 q^{16} - 9600 q^{20} + 15000 q^{25} - 3872 q^{26} + 3136 q^{28} - 4900 q^{35} - 33512 q^{37} - 10208 q^{38} + 44968 q^{41} + 8016 q^{43} - 1312 q^{46} + 47240 q^{47}+ \cdots + 257936 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 0 0
\(4\) −16.0000 −0.500000
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) −124.893 + 34.7652i −0.963373 + 0.268164i
\(8\) 64.0000i 0.353553i
\(9\) 0 0
\(10\) 100.000i 0.316228i
\(11\) 250.926i 0.625265i −0.949874 0.312632i \(-0.898789\pi\)
0.949874 0.312632i \(-0.101211\pi\)
\(12\) 0 0
\(13\) 257.140i 0.422000i 0.977486 + 0.211000i \(0.0676719\pi\)
−0.977486 + 0.211000i \(0.932328\pi\)
\(14\) 139.061 + 499.574i 0.189620 + 0.681208i
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1652.74 −1.38702 −0.693511 0.720446i \(-0.743937\pi\)
−0.693511 + 0.720446i \(0.743937\pi\)
\(18\) 0 0
\(19\) 117.851i 0.0748944i 0.999299 + 0.0374472i \(0.0119226\pi\)
−0.999299 + 0.0374472i \(0.988077\pi\)
\(20\) −400.000 −0.223607
\(21\) 0 0
\(22\) −1003.70 −0.442129
\(23\) 3228.81i 1.27269i −0.771405 0.636344i \(-0.780446\pi\)
0.771405 0.636344i \(-0.219554\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 1028.56 0.298399
\(27\) 0 0
\(28\) 1998.30 556.244i 0.481687 0.134082i
\(29\) 1172.64i 0.258922i −0.991585 0.129461i \(-0.958675\pi\)
0.991585 0.129461i \(-0.0413247\pi\)
\(30\) 0 0
\(31\) 6328.52i 1.18276i 0.806392 + 0.591382i \(0.201417\pi\)
−0.806392 + 0.591382i \(0.798583\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 0 0
\(34\) 6610.97i 0.980772i
\(35\) −3122.34 + 869.131i −0.430834 + 0.119927i
\(36\) 0 0
\(37\) 8379.92 1.00632 0.503159 0.864194i \(-0.332171\pi\)
0.503159 + 0.864194i \(0.332171\pi\)
\(38\) 471.404 0.0529583
\(39\) 0 0
\(40\) 1600.00i 0.158114i
\(41\) −14627.5 −1.35897 −0.679485 0.733690i \(-0.737797\pi\)
−0.679485 + 0.733690i \(0.737797\pi\)
\(42\) 0 0
\(43\) −15895.7 −1.31102 −0.655508 0.755188i \(-0.727546\pi\)
−0.655508 + 0.755188i \(0.727546\pi\)
\(44\) 4014.82i 0.312632i
\(45\) 0 0
\(46\) −12915.2 −0.899927
\(47\) 16810.9 1.11006 0.555028 0.831831i \(-0.312707\pi\)
0.555028 + 0.831831i \(0.312707\pi\)
\(48\) 0 0
\(49\) 14389.8 8683.90i 0.856176 0.516684i
\(50\) 2500.00i 0.141421i
\(51\) 0 0
\(52\) 4114.25i 0.211000i
\(53\) 2337.18i 0.114289i −0.998366 0.0571444i \(-0.981800\pi\)
0.998366 0.0571444i \(-0.0181995\pi\)
\(54\) 0 0
\(55\) 6273.15i 0.279627i
\(56\) −2224.98 7993.18i −0.0948102 0.340604i
\(57\) 0 0
\(58\) −4690.55 −0.183085
\(59\) 9243.24 0.345696 0.172848 0.984949i \(-0.444703\pi\)
0.172848 + 0.984949i \(0.444703\pi\)
\(60\) 0 0
\(61\) 19645.3i 0.675979i 0.941150 + 0.337990i \(0.109747\pi\)
−0.941150 + 0.337990i \(0.890253\pi\)
\(62\) 25314.1 0.836340
\(63\) 0 0
\(64\) −4096.00 −0.125000
\(65\) 6428.51i 0.188724i
\(66\) 0 0
\(67\) 46708.5 1.27118 0.635592 0.772025i \(-0.280756\pi\)
0.635592 + 0.772025i \(0.280756\pi\)
\(68\) 26443.9 0.693511
\(69\) 0 0
\(70\) 3476.52 + 12489.3i 0.0848009 + 0.304645i
\(71\) 36402.7i 0.857014i 0.903538 + 0.428507i \(0.140960\pi\)
−0.903538 + 0.428507i \(0.859040\pi\)
\(72\) 0 0
\(73\) 26899.4i 0.590793i 0.955375 + 0.295397i \(0.0954518\pi\)
−0.955375 + 0.295397i \(0.904548\pi\)
\(74\) 33519.7i 0.711575i
\(75\) 0 0
\(76\) 1885.62i 0.0374472i
\(77\) 8723.50 + 31339.0i 0.167673 + 0.602363i
\(78\) 0 0
\(79\) −37598.8 −0.677807 −0.338903 0.940821i \(-0.610056\pi\)
−0.338903 + 0.940821i \(0.610056\pi\)
\(80\) 6400.00 0.111803
\(81\) 0 0
\(82\) 58509.9i 0.960937i
\(83\) 90834.3 1.44729 0.723643 0.690174i \(-0.242466\pi\)
0.723643 + 0.690174i \(0.242466\pi\)
\(84\) 0 0
\(85\) −41318.6 −0.620295
\(86\) 63582.8i 0.927029i
\(87\) 0 0
\(88\) 16059.3 0.221064
\(89\) 57741.9 0.772709 0.386354 0.922350i \(-0.373734\pi\)
0.386354 + 0.922350i \(0.373734\pi\)
\(90\) 0 0
\(91\) −8939.55 32115.2i −0.113165 0.406543i
\(92\) 51660.9i 0.636344i
\(93\) 0 0
\(94\) 67243.4i 0.784929i
\(95\) 2946.27i 0.0334938i
\(96\) 0 0
\(97\) 24079.1i 0.259843i 0.991524 + 0.129921i \(0.0414725\pi\)
−0.991524 + 0.129921i \(0.958527\pi\)
\(98\) −34735.6 57559.0i −0.365351 0.605408i
\(99\) 0 0
\(100\) −10000.0 −0.100000
\(101\) 46941.1 0.457878 0.228939 0.973441i \(-0.426474\pi\)
0.228939 + 0.973441i \(0.426474\pi\)
\(102\) 0 0
\(103\) 15891.2i 0.147593i −0.997273 0.0737964i \(-0.976489\pi\)
0.997273 0.0737964i \(-0.0235115\pi\)
\(104\) −16457.0 −0.149199
\(105\) 0 0
\(106\) −9348.74 −0.0808143
\(107\) 32260.0i 0.272398i −0.990681 0.136199i \(-0.956511\pi\)
0.990681 0.136199i \(-0.0434887\pi\)
\(108\) 0 0
\(109\) −82838.0 −0.667826 −0.333913 0.942604i \(-0.608369\pi\)
−0.333913 + 0.942604i \(0.608369\pi\)
\(110\) −25092.6 −0.197726
\(111\) 0 0
\(112\) −31972.7 + 8899.90i −0.240843 + 0.0670410i
\(113\) 218676.i 1.61104i 0.592571 + 0.805518i \(0.298113\pi\)
−0.592571 + 0.805518i \(0.701887\pi\)
\(114\) 0 0
\(115\) 80720.1i 0.569164i
\(116\) 18762.2i 0.129461i
\(117\) 0 0
\(118\) 36973.0i 0.244444i
\(119\) 206417. 57458.0i 1.33622 0.371949i
\(120\) 0 0
\(121\) 98087.2 0.609044
\(122\) 78581.1 0.477990
\(123\) 0 0
\(124\) 101256.i 0.591382i
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) 86791.1 0.477492 0.238746 0.971082i \(-0.423264\pi\)
0.238746 + 0.971082i \(0.423264\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) 0 0
\(130\) 25714.0 0.133448
\(131\) 222644. 1.13353 0.566766 0.823879i \(-0.308195\pi\)
0.566766 + 0.823879i \(0.308195\pi\)
\(132\) 0 0
\(133\) −4097.12 14718.8i −0.0200840 0.0721512i
\(134\) 186834.i 0.898863i
\(135\) 0 0
\(136\) 105776.i 0.490386i
\(137\) 218091.i 0.992743i −0.868110 0.496372i \(-0.834665\pi\)
0.868110 0.496372i \(-0.165335\pi\)
\(138\) 0 0
\(139\) 407509.i 1.78896i 0.447110 + 0.894479i \(0.352453\pi\)
−0.447110 + 0.894479i \(0.647547\pi\)
\(140\) 49957.4 13906.1i 0.215417 0.0599633i
\(141\) 0 0
\(142\) 145611. 0.606000
\(143\) 64523.2 0.263861
\(144\) 0 0
\(145\) 29315.9i 0.115793i
\(146\) 107598. 0.417754
\(147\) 0 0
\(148\) −134079. −0.503159
\(149\) 17290.9i 0.0638048i −0.999491 0.0319024i \(-0.989843\pi\)
0.999491 0.0319024i \(-0.0101566\pi\)
\(150\) 0 0
\(151\) −261712. −0.934074 −0.467037 0.884238i \(-0.654679\pi\)
−0.467037 + 0.884238i \(0.654679\pi\)
\(152\) −7542.46 −0.0264792
\(153\) 0 0
\(154\) 125356. 34894.0i 0.425935 0.118563i
\(155\) 158213.i 0.528948i
\(156\) 0 0
\(157\) 221963.i 0.718672i −0.933208 0.359336i \(-0.883003\pi\)
0.933208 0.359336i \(-0.116997\pi\)
\(158\) 150395.i 0.479282i
\(159\) 0 0
\(160\) 25600.0i 0.0790569i
\(161\) 112250. + 403257.i 0.341289 + 1.22607i
\(162\) 0 0
\(163\) 112138. 0.330586 0.165293 0.986245i \(-0.447143\pi\)
0.165293 + 0.986245i \(0.447143\pi\)
\(164\) 234040. 0.679485
\(165\) 0 0
\(166\) 363337.i 1.02339i
\(167\) 680406. 1.88789 0.943945 0.330102i \(-0.107083\pi\)
0.943945 + 0.330102i \(0.107083\pi\)
\(168\) 0 0
\(169\) 305172. 0.821916
\(170\) 165274.i 0.438615i
\(171\) 0 0
\(172\) 254331. 0.655508
\(173\) 457211. 1.16145 0.580726 0.814099i \(-0.302769\pi\)
0.580726 + 0.814099i \(0.302769\pi\)
\(174\) 0 0
\(175\) −78058.4 + 21728.3i −0.192675 + 0.0536328i
\(176\) 64237.0i 0.156316i
\(177\) 0 0
\(178\) 230967.i 0.546388i
\(179\) 430235.i 1.00363i 0.864975 + 0.501815i \(0.167334\pi\)
−0.864975 + 0.501815i \(0.832666\pi\)
\(180\) 0 0
\(181\) 612200.i 1.38898i −0.719501 0.694491i \(-0.755630\pi\)
0.719501 0.694491i \(-0.244370\pi\)
\(182\) −128461. + 35758.2i −0.287469 + 0.0800198i
\(183\) 0 0
\(184\) 206644. 0.449963
\(185\) 209498. 0.450040
\(186\) 0 0
\(187\) 414716.i 0.867255i
\(188\) −268974. −0.555028
\(189\) 0 0
\(190\) 11785.1 0.0236837
\(191\) 48454.8i 0.0961067i 0.998845 + 0.0480534i \(0.0153018\pi\)
−0.998845 + 0.0480534i \(0.984698\pi\)
\(192\) 0 0
\(193\) 203700. 0.393639 0.196819 0.980440i \(-0.436939\pi\)
0.196819 + 0.980440i \(0.436939\pi\)
\(194\) 96316.4 0.183737
\(195\) 0 0
\(196\) −230236. + 138942.i −0.428088 + 0.258342i
\(197\) 761950.i 1.39882i −0.714722 0.699409i \(-0.753447\pi\)
0.714722 0.699409i \(-0.246553\pi\)
\(198\) 0 0
\(199\) 828377.i 1.48284i −0.671040 0.741422i \(-0.734152\pi\)
0.671040 0.741422i \(-0.265848\pi\)
\(200\) 40000.0i 0.0707107i
\(201\) 0 0
\(202\) 187765.i 0.323769i
\(203\) 40767.0 + 146455.i 0.0694335 + 0.249438i
\(204\) 0 0
\(205\) −365687. −0.607750
\(206\) −63565.0 −0.104364
\(207\) 0 0
\(208\) 65827.9i 0.105500i
\(209\) 29571.9 0.0468288
\(210\) 0 0
\(211\) 650544. 1.00594 0.502968 0.864305i \(-0.332241\pi\)
0.502968 + 0.864305i \(0.332241\pi\)
\(212\) 37395.0i 0.0571444i
\(213\) 0 0
\(214\) −129040. −0.192615
\(215\) −397392. −0.586304
\(216\) 0 0
\(217\) −220013. 790391.i −0.317175 1.13944i
\(218\) 331352.i 0.472225i
\(219\) 0 0
\(220\) 100370.i 0.139813i
\(221\) 424987.i 0.585322i
\(222\) 0 0
\(223\) 872212.i 1.17452i −0.809399 0.587259i \(-0.800207\pi\)
0.809399 0.587259i \(-0.199793\pi\)
\(224\) 35599.6 + 127891.i 0.0474051 + 0.170302i
\(225\) 0 0
\(226\) 874705. 1.13918
\(227\) 685709. 0.883233 0.441617 0.897204i \(-0.354405\pi\)
0.441617 + 0.897204i \(0.354405\pi\)
\(228\) 0 0
\(229\) 541865.i 0.682815i −0.939915 0.341407i \(-0.889096\pi\)
0.939915 0.341407i \(-0.110904\pi\)
\(230\) −322881. −0.402460
\(231\) 0 0
\(232\) 75048.8 0.0915427
\(233\) 925562.i 1.11690i −0.829537 0.558452i \(-0.811396\pi\)
0.829537 0.558452i \(-0.188604\pi\)
\(234\) 0 0
\(235\) 420271. 0.496432
\(236\) −147892. −0.172848
\(237\) 0 0
\(238\) −229832. 825667.i −0.263008 0.944850i
\(239\) 655469.i 0.742262i 0.928580 + 0.371131i \(0.121030\pi\)
−0.928580 + 0.371131i \(0.878970\pi\)
\(240\) 0 0
\(241\) 418245.i 0.463861i 0.972732 + 0.231930i \(0.0745042\pi\)
−0.972732 + 0.231930i \(0.925496\pi\)
\(242\) 392349.i 0.430659i
\(243\) 0 0
\(244\) 314324.i 0.337990i
\(245\) 359744. 217098.i 0.382894 0.231068i
\(246\) 0 0
\(247\) −30304.2 −0.0316054
\(248\) −405025. −0.418170
\(249\) 0 0
\(250\) 62500.0i 0.0632456i
\(251\) −626694. −0.627872 −0.313936 0.949444i \(-0.601648\pi\)
−0.313936 + 0.949444i \(0.601648\pi\)
\(252\) 0 0
\(253\) −810191. −0.795767
\(254\) 347164.i 0.337638i
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −74024.8 −0.0699108 −0.0349554 0.999389i \(-0.511129\pi\)
−0.0349554 + 0.999389i \(0.511129\pi\)
\(258\) 0 0
\(259\) −1.04660e6 + 291330.i −0.969461 + 0.269858i
\(260\) 102856.i 0.0943620i
\(261\) 0 0
\(262\) 890577.i 0.801528i
\(263\) 2.12162e6i 1.89138i 0.325074 + 0.945689i \(0.394611\pi\)
−0.325074 + 0.945689i \(0.605389\pi\)
\(264\) 0 0
\(265\) 58429.6i 0.0511115i
\(266\) −58875.3 + 16388.5i −0.0510186 + 0.0142015i
\(267\) 0 0
\(268\) −747335. −0.635592
\(269\) 781904. 0.658829 0.329414 0.944185i \(-0.393149\pi\)
0.329414 + 0.944185i \(0.393149\pi\)
\(270\) 0 0
\(271\) 1.53480e6i 1.26949i 0.772723 + 0.634743i \(0.218894\pi\)
−0.772723 + 0.634743i \(0.781106\pi\)
\(272\) −423102. −0.346755
\(273\) 0 0
\(274\) −872365. −0.701975
\(275\) 156829.i 0.125053i
\(276\) 0 0
\(277\) 63027.3 0.0493548 0.0246774 0.999695i \(-0.492144\pi\)
0.0246774 + 0.999695i \(0.492144\pi\)
\(278\) 1.63004e6 1.26498
\(279\) 0 0
\(280\) −55624.4 199830.i −0.0424004 0.152323i
\(281\) 1.12630e6i 0.850916i 0.904978 + 0.425458i \(0.139887\pi\)
−0.904978 + 0.425458i \(0.860113\pi\)
\(282\) 0 0
\(283\) 178391.i 0.132406i 0.997806 + 0.0662029i \(0.0210885\pi\)
−0.997806 + 0.0662029i \(0.978912\pi\)
\(284\) 582443.i 0.428507i
\(285\) 0 0
\(286\) 258093.i 0.186578i
\(287\) 1.82688e6 508528.i 1.30920 0.364427i
\(288\) 0 0
\(289\) 1.31170e6 0.923828
\(290\) −117264. −0.0818783
\(291\) 0 0
\(292\) 430390.i 0.295397i
\(293\) −887427. −0.603898 −0.301949 0.953324i \(-0.597637\pi\)
−0.301949 + 0.953324i \(0.597637\pi\)
\(294\) 0 0
\(295\) 231081. 0.154600
\(296\) 536315.i 0.355787i
\(297\) 0 0
\(298\) −69163.8 −0.0451168
\(299\) 830256. 0.537074
\(300\) 0 0
\(301\) 1.98527e6 552618.i 1.26300 0.351567i
\(302\) 1.04685e6i 0.660490i
\(303\) 0 0
\(304\) 30169.8i 0.0187236i
\(305\) 491132.i 0.302307i
\(306\) 0 0
\(307\) 559597.i 0.338867i −0.985542 0.169434i \(-0.945806\pi\)
0.985542 0.169434i \(-0.0541938\pi\)
\(308\) −139576. 501424.i −0.0838367 0.301182i
\(309\) 0 0
\(310\) 632852. 0.374023
\(311\) 1.69108e6 0.991430 0.495715 0.868485i \(-0.334906\pi\)
0.495715 + 0.868485i \(0.334906\pi\)
\(312\) 0 0
\(313\) 128607.i 0.0741998i 0.999312 + 0.0370999i \(0.0118120\pi\)
−0.999312 + 0.0370999i \(0.988188\pi\)
\(314\) −887851. −0.508178
\(315\) 0 0
\(316\) 601580. 0.338903
\(317\) 429305.i 0.239949i −0.992777 0.119974i \(-0.961719\pi\)
0.992777 0.119974i \(-0.0382812\pi\)
\(318\) 0 0
\(319\) −294245. −0.161895
\(320\) −102400. −0.0559017
\(321\) 0 0
\(322\) 1.61303e6 449001.i 0.866966 0.241328i
\(323\) 194777.i 0.103880i
\(324\) 0 0
\(325\) 160713.i 0.0843999i
\(326\) 448553.i 0.233760i
\(327\) 0 0
\(328\) 936158.i 0.480468i
\(329\) −2.09957e6 + 584434.i −1.06940 + 0.297677i
\(330\) 0 0
\(331\) 1.28096e6 0.642638 0.321319 0.946971i \(-0.395874\pi\)
0.321319 + 0.946971i \(0.395874\pi\)
\(332\) −1.45335e6 −0.723643
\(333\) 0 0
\(334\) 2.72162e6i 1.33494i
\(335\) 1.16771e6 0.568491
\(336\) 0 0
\(337\) −2.74480e6 −1.31655 −0.658273 0.752779i \(-0.728713\pi\)
−0.658273 + 0.752779i \(0.728713\pi\)
\(338\) 1.22069e6i 0.581183i
\(339\) 0 0
\(340\) 661097. 0.310147
\(341\) 1.58799e6 0.739540
\(342\) 0 0
\(343\) −1.49529e6 + 1.58483e6i −0.686261 + 0.727355i
\(344\) 1.01732e6i 0.463514i
\(345\) 0 0
\(346\) 1.82884e6i 0.821271i
\(347\) 1.96460e6i 0.875892i −0.899001 0.437946i \(-0.855706\pi\)
0.899001 0.437946i \(-0.144294\pi\)
\(348\) 0 0
\(349\) 1.32426e6i 0.581982i 0.956726 + 0.290991i \(0.0939850\pi\)
−0.956726 + 0.290991i \(0.906015\pi\)
\(350\) 86913.1 + 312234.i 0.0379241 + 0.136242i
\(351\) 0 0
\(352\) −256948. −0.110532
\(353\) 4.26988e6 1.82381 0.911903 0.410407i \(-0.134613\pi\)
0.911903 + 0.410407i \(0.134613\pi\)
\(354\) 0 0
\(355\) 910068.i 0.383268i
\(356\) −923870. −0.386354
\(357\) 0 0
\(358\) 1.72094e6 0.709674
\(359\) 2.14957e6i 0.880271i 0.897931 + 0.440135i \(0.145070\pi\)
−0.897931 + 0.440135i \(0.854930\pi\)
\(360\) 0 0
\(361\) 2.46221e6 0.994391
\(362\) −2.44880e6 −0.982159
\(363\) 0 0
\(364\) 143033. + 513843.i 0.0565825 + 0.203272i
\(365\) 672485.i 0.264211i
\(366\) 0 0
\(367\) 3.00711e6i 1.16542i 0.812679 + 0.582712i \(0.198008\pi\)
−0.812679 + 0.582712i \(0.801992\pi\)
\(368\) 826574.i 0.318172i
\(369\) 0 0
\(370\) 837992.i 0.318226i
\(371\) 81252.8 + 291899.i 0.0306481 + 0.110103i
\(372\) 0 0
\(373\) −3.59913e6 −1.33945 −0.669723 0.742611i \(-0.733587\pi\)
−0.669723 + 0.742611i \(0.733587\pi\)
\(374\) 1.65887e6 0.613242
\(375\) 0 0
\(376\) 1.07589e6i 0.392464i
\(377\) 301532. 0.109265
\(378\) 0 0
\(379\) −2.67563e6 −0.956817 −0.478408 0.878138i \(-0.658786\pi\)
−0.478408 + 0.878138i \(0.658786\pi\)
\(380\) 47140.4i 0.0167469i
\(381\) 0 0
\(382\) 193819. 0.0679577
\(383\) −2.95549e6 −1.02951 −0.514757 0.857336i \(-0.672118\pi\)
−0.514757 + 0.857336i \(0.672118\pi\)
\(384\) 0 0
\(385\) 218088. + 783475.i 0.0749858 + 0.269385i
\(386\) 814800.i 0.278345i
\(387\) 0 0
\(388\) 385266.i 0.129921i
\(389\) 892541.i 0.299057i −0.988757 0.149529i \(-0.952224\pi\)
0.988757 0.149529i \(-0.0477756\pi\)
\(390\) 0 0
\(391\) 5.33639e6i 1.76525i
\(392\) 555770. + 920944.i 0.182675 + 0.302704i
\(393\) 0 0
\(394\) −3.04780e6 −0.989113
\(395\) −939969. −0.303124
\(396\) 0 0
\(397\) 5.77515e6i 1.83902i 0.393066 + 0.919510i \(0.371415\pi\)
−0.393066 + 0.919510i \(0.628585\pi\)
\(398\) −3.31351e6 −1.04853
\(399\) 0 0
\(400\) 160000. 0.0500000
\(401\) 1.74154e6i 0.540843i 0.962742 + 0.270422i \(0.0871631\pi\)
−0.962742 + 0.270422i \(0.912837\pi\)
\(402\) 0 0
\(403\) −1.62732e6 −0.499126
\(404\) −751058. −0.228939
\(405\) 0 0
\(406\) 585819. 163068.i 0.176380 0.0490969i
\(407\) 2.10274e6i 0.629216i
\(408\) 0 0
\(409\) 383019.i 0.113217i 0.998396 + 0.0566085i \(0.0180287\pi\)
−0.998396 + 0.0566085i \(0.981971\pi\)
\(410\) 1.46275e6i 0.429744i
\(411\) 0 0
\(412\) 254260.i 0.0737964i
\(413\) −1.15442e6 + 321344.i −0.333034 + 0.0927031i
\(414\) 0 0
\(415\) 2.27086e6 0.647246
\(416\) 263312. 0.0745997
\(417\) 0 0
\(418\) 118287.i 0.0331130i
\(419\) −2.56608e6 −0.714060 −0.357030 0.934093i \(-0.616211\pi\)
−0.357030 + 0.934093i \(0.616211\pi\)
\(420\) 0 0
\(421\) −2.66217e6 −0.732034 −0.366017 0.930608i \(-0.619279\pi\)
−0.366017 + 0.930608i \(0.619279\pi\)
\(422\) 2.60217e6i 0.711304i
\(423\) 0 0
\(424\) 149580. 0.0404072
\(425\) −1.03296e6 −0.277404
\(426\) 0 0
\(427\) −682973. 2.45357e6i −0.181273 0.651220i
\(428\) 516160.i 0.136199i
\(429\) 0 0
\(430\) 1.58957e6i 0.414580i
\(431\) 108661.i 0.0281761i 0.999901 + 0.0140881i \(0.00448452\pi\)
−0.999901 + 0.0140881i \(0.995515\pi\)
\(432\) 0 0
\(433\) 5.80622e6i 1.48824i 0.668044 + 0.744121i \(0.267132\pi\)
−0.668044 + 0.744121i \(0.732868\pi\)
\(434\) −3.16156e6 + 880051.i −0.805708 + 0.224276i
\(435\) 0 0
\(436\) 1.32541e6 0.333913
\(437\) 380518. 0.0953172
\(438\) 0 0
\(439\) 7.58694e6i 1.87891i 0.342677 + 0.939453i \(0.388666\pi\)
−0.342677 + 0.939453i \(0.611334\pi\)
\(440\) 401482. 0.0988630
\(441\) 0 0
\(442\) −1.69995e6 −0.413885
\(443\) 1.62606e6i 0.393667i −0.980437 0.196833i \(-0.936934\pi\)
0.980437 0.196833i \(-0.0630658\pi\)
\(444\) 0 0
\(445\) 1.44355e6 0.345566
\(446\) −3.48885e6 −0.830510
\(447\) 0 0
\(448\) 511564. 142398.i 0.120422 0.0335205i
\(449\) 3.92915e6i 0.919778i −0.887976 0.459889i \(-0.847889\pi\)
0.887976 0.459889i \(-0.152111\pi\)
\(450\) 0 0
\(451\) 3.67041e6i 0.849716i
\(452\) 3.49882e6i 0.805518i
\(453\) 0 0
\(454\) 2.74284e6i 0.624540i
\(455\) −223489. 802879.i −0.0506089 0.181812i
\(456\) 0 0
\(457\) 3.27250e6 0.732975 0.366487 0.930423i \(-0.380560\pi\)
0.366487 + 0.930423i \(0.380560\pi\)
\(458\) −2.16746e6 −0.482823
\(459\) 0 0
\(460\) 1.29152e6i 0.284582i
\(461\) −2.27791e6 −0.499212 −0.249606 0.968348i \(-0.580301\pi\)
−0.249606 + 0.968348i \(0.580301\pi\)
\(462\) 0 0
\(463\) 1.74893e6 0.379159 0.189579 0.981865i \(-0.439288\pi\)
0.189579 + 0.981865i \(0.439288\pi\)
\(464\) 300195.i 0.0647305i
\(465\) 0 0
\(466\) −3.70225e6 −0.789770
\(467\) −2.56896e6 −0.545086 −0.272543 0.962144i \(-0.587865\pi\)
−0.272543 + 0.962144i \(0.587865\pi\)
\(468\) 0 0
\(469\) −5.83358e6 + 1.62383e6i −1.22462 + 0.340886i
\(470\) 1.68109e6i 0.351031i
\(471\) 0 0
\(472\) 591567.i 0.122222i
\(473\) 3.98864e6i 0.819732i
\(474\) 0 0
\(475\) 73656.8i 0.0149789i
\(476\) −3.30267e6 + 919329.i −0.668110 + 0.185975i
\(477\) 0 0
\(478\) 2.62188e6 0.524859
\(479\) −431057. −0.0858412 −0.0429206 0.999078i \(-0.513666\pi\)
−0.0429206 + 0.999078i \(0.513666\pi\)
\(480\) 0 0
\(481\) 2.15482e6i 0.424666i
\(482\) 1.67298e6 0.327999
\(483\) 0 0
\(484\) −1.56939e6 −0.304522
\(485\) 601978.i 0.116205i
\(486\) 0 0
\(487\) −4.46936e6 −0.853930 −0.426965 0.904268i \(-0.640417\pi\)
−0.426965 + 0.904268i \(0.640417\pi\)
\(488\) −1.25730e6 −0.238995
\(489\) 0 0
\(490\) −868390. 1.43898e6i −0.163390 0.270747i
\(491\) 8.72553e6i 1.63338i 0.577074 + 0.816692i \(0.304194\pi\)
−0.577074 + 0.816692i \(0.695806\pi\)
\(492\) 0 0
\(493\) 1.93807e6i 0.359130i
\(494\) 121217.i 0.0223484i
\(495\) 0 0
\(496\) 1.62010e6i 0.295691i
\(497\) −1.26555e6 4.54646e6i −0.229820 0.825624i
\(498\) 0 0
\(499\) −4.39068e6 −0.789370 −0.394685 0.918816i \(-0.629146\pi\)
−0.394685 + 0.918816i \(0.629146\pi\)
\(500\) −250000. −0.0447214
\(501\) 0 0
\(502\) 2.50677e6i 0.443972i
\(503\) −6.08246e6 −1.07191 −0.535956 0.844246i \(-0.680049\pi\)
−0.535956 + 0.844246i \(0.680049\pi\)
\(504\) 0 0
\(505\) 1.17353e6 0.204769
\(506\) 3.24076e6i 0.562693i
\(507\) 0 0
\(508\) −1.38866e6 −0.238746
\(509\) 1.05519e7 1.80525 0.902624 0.430429i \(-0.141638\pi\)
0.902624 + 0.430429i \(0.141638\pi\)
\(510\) 0 0
\(511\) −935164. 3.35956e6i −0.158429 0.569154i
\(512\) 262144.i 0.0441942i
\(513\) 0 0
\(514\) 296099.i 0.0494344i
\(515\) 397281.i 0.0660055i
\(516\) 0 0
\(517\) 4.21828e6i 0.694079i
\(518\) 1.16532e6 + 4.18639e6i 0.190819 + 0.685512i
\(519\) 0 0
\(520\) −411425. −0.0667240
\(521\) −9.28639e6 −1.49883 −0.749415 0.662100i \(-0.769665\pi\)
−0.749415 + 0.662100i \(0.769665\pi\)
\(522\) 0 0
\(523\) 2.11426e6i 0.337990i 0.985617 + 0.168995i \(0.0540522\pi\)
−0.985617 + 0.168995i \(0.945948\pi\)
\(524\) −3.56231e6 −0.566766
\(525\) 0 0
\(526\) 8.48648e6 1.33741
\(527\) 1.04594e7i 1.64052i
\(528\) 0 0
\(529\) −3.98884e6 −0.619737
\(530\) −233718. −0.0361413
\(531\) 0 0
\(532\) 65553.9 + 235501.i 0.0100420 + 0.0360756i
\(533\) 3.76132e6i 0.573485i
\(534\) 0 0
\(535\) 806499.i 0.121820i
\(536\) 2.98934e6i 0.449431i
\(537\) 0 0
\(538\) 3.12761e6i 0.465862i
\(539\) −2.17902e6 3.61076e6i −0.323064 0.535337i
\(540\) 0 0
\(541\) −8.45504e6 −1.24200 −0.621001 0.783810i \(-0.713274\pi\)
−0.621001 + 0.783810i \(0.713274\pi\)
\(542\) 6.13919e6 0.897663
\(543\) 0 0
\(544\) 1.69241e6i 0.245193i
\(545\) −2.07095e6 −0.298661
\(546\) 0 0
\(547\) 1.35037e7 1.92968 0.964839 0.262842i \(-0.0846598\pi\)
0.964839 + 0.262842i \(0.0846598\pi\)
\(548\) 3.48946e6i 0.496372i
\(549\) 0 0
\(550\) −627315. −0.0884258
\(551\) 138196. 0.0193918
\(552\) 0 0
\(553\) 4.69584e6 1.30713e6i 0.652981 0.181763i
\(554\) 252109.i 0.0348991i
\(555\) 0 0
\(556\) 6.52014e6i 0.894479i
\(557\) 3.34565e6i 0.456923i −0.973553 0.228461i \(-0.926631\pi\)
0.973553 0.228461i \(-0.0733695\pi\)
\(558\) 0 0
\(559\) 4.08742e6i 0.553248i
\(560\) −799318. + 222498.i −0.107708 + 0.0299816i
\(561\) 0 0
\(562\) 4.50518e6 0.601688
\(563\) 8.21303e6 1.09202 0.546012 0.837777i \(-0.316145\pi\)
0.546012 + 0.837777i \(0.316145\pi\)
\(564\) 0 0
\(565\) 5.46691e6i 0.720478i
\(566\) 713564. 0.0936250
\(567\) 0 0
\(568\) −2.32977e6 −0.303000
\(569\) 8.77528e6i 1.13627i 0.822937 + 0.568133i \(0.192334\pi\)
−0.822937 + 0.568133i \(0.807666\pi\)
\(570\) 0 0
\(571\) 683364. 0.0877126 0.0438563 0.999038i \(-0.486036\pi\)
0.0438563 + 0.999038i \(0.486036\pi\)
\(572\) −1.03237e6 −0.131931
\(573\) 0 0
\(574\) −2.03411e6 7.30750e6i −0.257688 0.925741i
\(575\) 2.01800e6i 0.254538i
\(576\) 0 0
\(577\) 1.99601e6i 0.249588i 0.992183 + 0.124794i \(0.0398269\pi\)
−0.992183 + 0.124794i \(0.960173\pi\)
\(578\) 5.24682e6i 0.653245i
\(579\) 0 0
\(580\) 469055.i 0.0578967i
\(581\) −1.13446e7 + 3.15788e6i −1.39428 + 0.388110i
\(582\) 0 0
\(583\) −586460. −0.0714607
\(584\) −1.72156e6 −0.208877
\(585\) 0 0
\(586\) 3.54971e6i 0.427020i
\(587\) 6.98045e6 0.836157 0.418079 0.908411i \(-0.362704\pi\)
0.418079 + 0.908411i \(0.362704\pi\)
\(588\) 0 0
\(589\) −745822. −0.0885823
\(590\) 924324.i 0.109319i
\(591\) 0 0
\(592\) 2.14526e6 0.251580
\(593\) 105524. 0.0123230 0.00616148 0.999981i \(-0.498039\pi\)
0.00616148 + 0.999981i \(0.498039\pi\)
\(594\) 0 0
\(595\) 5.16042e6 1.43645e6i 0.597575 0.166341i
\(596\) 276655.i 0.0319024i
\(597\) 0 0
\(598\) 3.32103e6i 0.379769i
\(599\) 1.58816e6i 0.180854i 0.995903 + 0.0904268i \(0.0288231\pi\)
−0.995903 + 0.0904268i \(0.971177\pi\)
\(600\) 0 0
\(601\) 644521.i 0.0727865i 0.999338 + 0.0363932i \(0.0115869\pi\)
−0.999338 + 0.0363932i \(0.988413\pi\)
\(602\) −2.21047e6 7.94107e6i −0.248596 0.893075i
\(603\) 0 0
\(604\) 4.18739e6 0.467037
\(605\) 2.45218e6 0.272373
\(606\) 0 0
\(607\) 1.11241e7i 1.22544i 0.790299 + 0.612722i \(0.209925\pi\)
−0.790299 + 0.612722i \(0.790075\pi\)
\(608\) 120679. 0.0132396
\(609\) 0 0
\(610\) 1.96453e6 0.213763
\(611\) 4.32275e6i 0.468443i
\(612\) 0 0
\(613\) −396382. −0.0426052 −0.0213026 0.999773i \(-0.506781\pi\)
−0.0213026 + 0.999773i \(0.506781\pi\)
\(614\) −2.23839e6 −0.239615
\(615\) 0 0
\(616\) −2.00570e6 + 558304.i −0.212968 + 0.0592815i
\(617\) 1.10297e7i 1.16641i −0.812325 0.583205i \(-0.801798\pi\)
0.812325 0.583205i \(-0.198202\pi\)
\(618\) 0 0
\(619\) 5.83730e6i 0.612330i −0.951979 0.306165i \(-0.900954\pi\)
0.951979 0.306165i \(-0.0990458\pi\)
\(620\) 2.53141e6i 0.264474i
\(621\) 0 0
\(622\) 6.76430e6i 0.701047i
\(623\) −7.21158e6 + 2.00741e6i −0.744407 + 0.207213i
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 514427. 0.0524672
\(627\) 0 0
\(628\) 3.55140e6i 0.359336i
\(629\) −1.38499e7 −1.39579
\(630\) 0 0
\(631\) 1.24844e6 0.124822 0.0624112 0.998051i \(-0.480121\pi\)
0.0624112 + 0.998051i \(0.480121\pi\)
\(632\) 2.40632e6i 0.239641i
\(633\) 0 0
\(634\) −1.71722e6 −0.169669
\(635\) 2.16978e6 0.213541
\(636\) 0 0
\(637\) 2.23298e6 + 3.70019e6i 0.218040 + 0.361306i
\(638\) 1.17698e6i 0.114477i
\(639\) 0 0
\(640\) 409600.i 0.0395285i
\(641\) 1.44761e7i 1.39158i 0.718247 + 0.695789i \(0.244945\pi\)
−0.718247 + 0.695789i \(0.755055\pi\)
\(642\) 0 0
\(643\) 1.34882e7i 1.28655i −0.765634 0.643276i \(-0.777575\pi\)
0.765634 0.643276i \(-0.222425\pi\)
\(644\) −1.79600e6 6.45211e6i −0.170645 0.613037i
\(645\) 0 0
\(646\) −779110. −0.0734543
\(647\) 5.98310e6 0.561908 0.280954 0.959721i \(-0.409349\pi\)
0.280954 + 0.959721i \(0.409349\pi\)
\(648\) 0 0
\(649\) 2.31937e6i 0.216151i
\(650\) 642851. 0.0596797
\(651\) 0 0
\(652\) −1.79421e6 −0.165293
\(653\) 1.23357e7i 1.13209i −0.824375 0.566044i \(-0.808473\pi\)
0.824375 0.566044i \(-0.191527\pi\)
\(654\) 0 0
\(655\) 5.56611e6 0.506931
\(656\) −3.74463e6 −0.339742
\(657\) 0 0
\(658\) 2.33773e6 + 8.39826e6i 0.210489 + 0.756179i
\(659\) 9.01551e6i 0.808680i 0.914609 + 0.404340i \(0.132499\pi\)
−0.914609 + 0.404340i \(0.867501\pi\)
\(660\) 0 0
\(661\) 1.47810e7i 1.31583i −0.753092 0.657915i \(-0.771439\pi\)
0.753092 0.657915i \(-0.228561\pi\)
\(662\) 5.12385e6i 0.454414i
\(663\) 0 0
\(664\) 5.81339e6i 0.511693i
\(665\) −102428. 367970.i −0.00898182 0.0322670i
\(666\) 0 0
\(667\) −3.78622e6 −0.329527
\(668\) −1.08865e7 −0.943945
\(669\) 0 0
\(670\) 4.67085e6i 0.401984i
\(671\) 4.92951e6 0.422666
\(672\) 0 0
\(673\) −1.73688e7 −1.47819 −0.739097 0.673599i \(-0.764747\pi\)
−0.739097 + 0.673599i \(0.764747\pi\)
\(674\) 1.09792e7i 0.930938i
\(675\) 0 0
\(676\) −4.88275e6 −0.410958
\(677\) −3.84201e6 −0.322171 −0.161086 0.986940i \(-0.551500\pi\)
−0.161086 + 0.986940i \(0.551500\pi\)
\(678\) 0 0
\(679\) −837116. 3.00732e6i −0.0696805 0.250326i
\(680\) 2.64439e6i 0.219307i
\(681\) 0 0
\(682\) 6.35196e6i 0.522934i
\(683\) 1.53924e7i 1.26257i −0.775552 0.631284i \(-0.782528\pi\)
0.775552 0.631284i \(-0.217472\pi\)
\(684\) 0 0
\(685\) 5.45228e6i 0.443968i
\(686\) 6.33931e6 + 5.98115e6i 0.514318 + 0.485260i
\(687\) 0 0
\(688\) −4.06930e6 −0.327754
\(689\) 600985. 0.0482298
\(690\) 0 0
\(691\) 2.18384e6i 0.173990i 0.996209 + 0.0869952i \(0.0277265\pi\)
−0.996209 + 0.0869952i \(0.972274\pi\)
\(692\) −7.31538e6 −0.580726
\(693\) 0 0
\(694\) −7.85840e6 −0.619349
\(695\) 1.01877e7i 0.800047i
\(696\) 0 0
\(697\) 2.41755e7 1.88492
\(698\) 5.29704e6 0.411524
\(699\) 0 0
\(700\) 1.24893e6 347652.i 0.0963373 0.0268164i
\(701\) 7.56984e6i 0.581824i 0.956750 + 0.290912i \(0.0939588\pi\)
−0.956750 + 0.290912i \(0.906041\pi\)
\(702\) 0 0
\(703\) 987582.i 0.0753676i
\(704\) 1.02779e6i 0.0781581i
\(705\) 0 0
\(706\) 1.70795e7i 1.28963i
\(707\) −5.86264e6 + 1.63192e6i −0.441108 + 0.122786i
\(708\) 0 0
\(709\) −7.94088e6 −0.593271 −0.296636 0.954991i \(-0.595865\pi\)
−0.296636 + 0.954991i \(0.595865\pi\)
\(710\) 3.64027e6 0.271012
\(711\) 0 0
\(712\) 3.69548e6i 0.273194i
\(713\) 2.04336e7 1.50529
\(714\) 0 0
\(715\) 1.61308e6 0.118002
\(716\) 6.88377e6i 0.501815i
\(717\) 0 0
\(718\) 8.59829e6 0.622445
\(719\) −6.60018e6 −0.476139 −0.238069 0.971248i \(-0.576515\pi\)
−0.238069 + 0.971248i \(0.576515\pi\)
\(720\) 0 0
\(721\) 552463. + 1.98471e6i 0.0395790 + 0.142187i
\(722\) 9.84884e6i 0.703141i
\(723\) 0 0
\(724\) 9.79519e6i 0.694491i
\(725\) 732898.i 0.0517844i
\(726\) 0 0
\(727\) 1.48905e7i 1.04490i 0.852670 + 0.522450i \(0.174982\pi\)
−0.852670 + 0.522450i \(0.825018\pi\)
\(728\) 2.05537e6 572131.i 0.143735 0.0400099i
\(729\) 0 0
\(730\) 2.68994e6 0.186825
\(731\) 2.62715e7 1.81841
\(732\) 0 0
\(733\) 2.92924e6i 0.201370i −0.994918 0.100685i \(-0.967897\pi\)
0.994918 0.100685i \(-0.0321035\pi\)
\(734\) 1.20284e7 0.824079
\(735\) 0 0
\(736\) −3.30630e6 −0.224982
\(737\) 1.17204e7i 0.794827i
\(738\) 0 0
\(739\) −1.34133e7 −0.903490 −0.451745 0.892147i \(-0.649198\pi\)
−0.451745 + 0.892147i \(0.649198\pi\)
\(740\) −3.35197e6 −0.225020
\(741\) 0 0
\(742\) 1.16760e6 325011.i 0.0778544 0.0216715i
\(743\) 1.84546e7i 1.22640i 0.789926 + 0.613202i \(0.210119\pi\)
−0.789926 + 0.613202i \(0.789881\pi\)
\(744\) 0 0
\(745\) 432274.i 0.0285344i
\(746\) 1.43965e7i 0.947131i
\(747\) 0 0
\(748\) 6.63546e6i 0.433628i
\(749\) 1.12153e6 + 4.02906e6i 0.0730474 + 0.262421i
\(750\) 0 0
\(751\) −7.69435e6 −0.497819 −0.248910 0.968527i \(-0.580072\pi\)
−0.248910 + 0.968527i \(0.580072\pi\)
\(752\) 4.30358e6 0.277514
\(753\) 0 0
\(754\) 1.20613e6i 0.0772619i
\(755\) −6.54280e6 −0.417731
\(756\) 0 0
\(757\) 2.98178e7 1.89119 0.945596 0.325343i \(-0.105480\pi\)
0.945596 + 0.325343i \(0.105480\pi\)
\(758\) 1.07025e7i 0.676571i
\(759\) 0 0
\(760\) −188562. −0.0118418
\(761\) −989967. −0.0619668 −0.0309834 0.999520i \(-0.509864\pi\)
−0.0309834 + 0.999520i \(0.509864\pi\)
\(762\) 0 0
\(763\) 1.03459e7 2.87989e6i 0.643366 0.179087i
\(764\) 775277.i 0.0480534i
\(765\) 0 0
\(766\) 1.18219e7i 0.727976i
\(767\) 2.37681e6i 0.145883i
\(768\) 0 0
\(769\) 2.70691e7i 1.65066i −0.564648 0.825332i \(-0.690988\pi\)
0.564648 0.825332i \(-0.309012\pi\)
\(770\) 3.13390e6 872350.i 0.190484 0.0530230i
\(771\) 0 0
\(772\) −3.25920e6 −0.196819
\(773\) 7.03911e6 0.423710 0.211855 0.977301i \(-0.432049\pi\)
0.211855 + 0.977301i \(0.432049\pi\)
\(774\) 0 0
\(775\) 3.95533e6i 0.236553i
\(776\) −1.54106e6 −0.0918684
\(777\) 0 0
\(778\) −3.57016e6 −0.211465
\(779\) 1.72386e6i 0.101779i
\(780\) 0 0
\(781\) 9.13439e6 0.535861
\(782\) 2.13455e7 1.24822
\(783\) 0 0
\(784\) 3.68378e6 2.22308e6i 0.214044 0.129171i
\(785\) 5.54907e6i 0.321400i
\(786\) 0 0
\(787\) 2.34090e7i 1.34725i −0.739076 0.673623i \(-0.764737\pi\)
0.739076 0.673623i \(-0.235263\pi\)
\(788\) 1.21912e7i 0.699409i
\(789\) 0 0
\(790\) 3.75988e6i 0.214341i
\(791\) −7.60233e6 2.73112e7i −0.432022 1.55203i
\(792\) 0 0
\(793\) −5.05159e6 −0.285263
\(794\) 2.31006e7 1.30038
\(795\) 0 0
\(796\) 1.32540e7i 0.741422i
\(797\) 3.71917e6 0.207396 0.103698 0.994609i \(-0.466932\pi\)
0.103698 + 0.994609i \(0.466932\pi\)
\(798\) 0 0
\(799\) −2.77840e7 −1.53967
\(800\) 640000.i 0.0353553i
\(801\) 0 0
\(802\) 6.96614e6 0.382434
\(803\) 6.74976e6 0.369402
\(804\) 0 0
\(805\) 2.80626e6 + 1.00814e7i 0.152629 + 0.548317i
\(806\) 6.50927e6i 0.352935i
\(807\) 0 0
\(808\) 3.00423e6i 0.161884i
\(809\) 2.99575e7i 1.60929i 0.593757 + 0.804645i \(0.297644\pi\)
−0.593757 + 0.804645i \(0.702356\pi\)
\(810\) 0 0
\(811\) 2.53853e7i 1.35528i −0.735393 0.677641i \(-0.763003\pi\)
0.735393 0.677641i \(-0.236997\pi\)
\(812\) −652272. 2.34328e6i −0.0347167 0.124719i
\(813\) 0 0
\(814\) −8.41096e6 −0.444923
\(815\) 2.80345e6 0.147843
\(816\) 0 0
\(817\) 1.87332e6i 0.0981878i
\(818\) 1.53208e6 0.0800565
\(819\) 0 0
\(820\) 5.85099e6 0.303875
\(821\) 4.22769e6i 0.218900i 0.993992 + 0.109450i \(0.0349089\pi\)
−0.993992 + 0.109450i \(0.965091\pi\)
\(822\) 0 0
\(823\) −2.93521e7 −1.51056 −0.755282 0.655400i \(-0.772500\pi\)
−0.755282 + 0.655400i \(0.772500\pi\)
\(824\) 1.01704e6 0.0521819
\(825\) 0 0
\(826\) 1.28537e6 + 4.61768e6i 0.0655510 + 0.235491i
\(827\) 6.82203e6i 0.346856i 0.984847 + 0.173428i \(0.0554845\pi\)
−0.984847 + 0.173428i \(0.944516\pi\)
\(828\) 0 0
\(829\) 3.86069e7i 1.95110i −0.219785 0.975548i \(-0.570535\pi\)
0.219785 0.975548i \(-0.429465\pi\)
\(830\) 9.08343e6i 0.457672i
\(831\) 0 0
\(832\) 1.05325e6i 0.0527499i
\(833\) −2.37826e7 + 1.43523e7i −1.18753 + 0.716652i
\(834\) 0 0
\(835\) 1.70101e7 0.844290
\(836\) −473150. −0.0234144
\(837\) 0 0
\(838\) 1.02643e7i 0.504917i
\(839\) 2.42201e7 1.18788 0.593938 0.804511i \(-0.297572\pi\)
0.593938 + 0.804511i \(0.297572\pi\)
\(840\) 0 0
\(841\) 1.91361e7 0.932959
\(842\) 1.06487e7i 0.517626i
\(843\) 0 0
\(844\) −1.04087e7 −0.502968
\(845\) 7.62930e6 0.367572
\(846\) 0 0
\(847\) −1.22504e7 + 3.41002e6i −0.586737 + 0.163324i
\(848\) 598319.i 0.0285722i
\(849\) 0 0
\(850\) 4.13186e6i 0.196154i
\(851\) 2.70571e7i 1.28073i
\(852\) 0 0
\(853\) 3.76643e7i 1.77238i −0.463320 0.886191i \(-0.653342\pi\)
0.463320 0.886191i \(-0.346658\pi\)
\(854\) −9.81426e6 + 2.73189e6i −0.460482 + 0.128180i
\(855\) 0 0
\(856\) 2.06464e6 0.0963074
\(857\) 2.10162e7 0.977467 0.488734 0.872433i \(-0.337459\pi\)
0.488734 + 0.872433i \(0.337459\pi\)
\(858\) 0 0
\(859\) 2.70614e7i 1.25132i 0.780098 + 0.625658i \(0.215169\pi\)
−0.780098 + 0.625658i \(0.784831\pi\)
\(860\) 6.35828e6 0.293152
\(861\) 0 0
\(862\) 434645. 0.0199235
\(863\) 2.02727e7i 0.926583i 0.886206 + 0.463292i \(0.153332\pi\)
−0.886206 + 0.463292i \(0.846668\pi\)
\(864\) 0 0
\(865\) 1.14303e7 0.519417
\(866\) 2.32249e7 1.05235
\(867\) 0 0
\(868\) 3.52020e6 + 1.26463e7i 0.158587 + 0.569722i
\(869\) 9.43450e6i 0.423809i
\(870\) 0 0
\(871\) 1.20106e7i 0.536439i
\(872\) 5.30164e6i 0.236112i
\(873\) 0 0
\(874\) 1.52207e6i 0.0673995i
\(875\) −1.95146e6 + 543207.i −0.0861667 + 0.0239853i
\(876\) 0 0
\(877\) 4.00096e7 1.75657 0.878285 0.478138i \(-0.158688\pi\)
0.878285 + 0.478138i \(0.158688\pi\)
\(878\) 3.03477e7 1.32859
\(879\) 0 0
\(880\) 1.60593e6i 0.0699067i
\(881\) 8.08763e6 0.351060 0.175530 0.984474i \(-0.443836\pi\)
0.175530 + 0.984474i \(0.443836\pi\)
\(882\) 0 0
\(883\) 3.10207e6 0.133891 0.0669453 0.997757i \(-0.478675\pi\)
0.0669453 + 0.997757i \(0.478675\pi\)
\(884\) 6.79979e6i 0.292661i
\(885\) 0 0
\(886\) −6.50426e6 −0.278364
\(887\) 4.62219e7 1.97260 0.986300 0.164963i \(-0.0527506\pi\)
0.986300 + 0.164963i \(0.0527506\pi\)
\(888\) 0 0
\(889\) −1.08396e7 + 3.01731e6i −0.460003 + 0.128046i
\(890\) 5.77419e6i 0.244352i
\(891\) 0 0
\(892\) 1.39554e7i 0.587259i
\(893\) 1.98118e6i 0.0831370i
\(894\) 0 0
\(895\) 1.07559e7i 0.448837i
\(896\) −569594. 2.04625e6i −0.0237026 0.0851510i
\(897\) 0 0
\(898\) −1.57166e7 −0.650381
\(899\) 7.42106e6 0.306243
\(900\) 0 0
\(901\) 3.86277e6i 0.158521i
\(902\) 1.46817e7 0.600840
\(903\) 0 0
\(904\) −1.39953e7 −0.569588
\(905\) 1.53050e7i 0.621172i
\(906\) 0 0
\(907\) 2.20005e7 0.888004 0.444002 0.896026i \(-0.353558\pi\)
0.444002 + 0.896026i \(0.353558\pi\)
\(908\) −1.09714e7 −0.441617
\(909\) 0 0
\(910\) −3.21152e6 + 893955.i −0.128560 + 0.0357859i
\(911\) 2.23313e7i 0.891492i −0.895160 0.445746i \(-0.852939\pi\)
0.895160 0.445746i \(-0.147061\pi\)
\(912\) 0 0
\(913\) 2.27927e7i 0.904937i
\(914\) 1.30900e7i 0.518292i
\(915\) 0 0
\(916\) 8.66985e6i 0.341407i
\(917\) −2.78068e7 + 7.74029e6i −1.09201 + 0.303972i
\(918\) 0 0
\(919\) −1.05602e6 −0.0412462 −0.0206231 0.999787i \(-0.506565\pi\)
−0.0206231 + 0.999787i \(0.506565\pi\)
\(920\) 5.16609e6 0.201230
\(921\) 0 0
\(922\) 9.11165e6i 0.352996i
\(923\) −9.36061e6 −0.361660
\(924\) 0 0
\(925\) 5.23745e6 0.201264
\(926\) 6.99574e6i 0.268106i
\(927\) 0 0
\(928\) −1.20078e6 −0.0457713
\(929\) −3.87822e7 −1.47432 −0.737162 0.675716i \(-0.763835\pi\)
−0.737162 + 0.675716i \(0.763835\pi\)
\(930\) 0 0
\(931\) 1.02341e6 + 1.69585e6i 0.0386967 + 0.0641228i
\(932\) 1.48090e7i 0.558452i
\(933\) 0 0
\(934\) 1.02758e7i 0.385434i
\(935\) 1.03679e7i 0.387848i
\(936\) 0 0
\(937\) 3.16361e7i 1.17716i −0.808440 0.588579i \(-0.799688\pi\)
0.808440 0.588579i \(-0.200312\pi\)
\(938\) 6.49532e6 + 2.33343e7i 0.241043 + 0.865941i
\(939\) 0 0
\(940\) −6.72434e6 −0.248216
\(941\) 2.56952e7 0.945972 0.472986 0.881070i \(-0.343176\pi\)
0.472986 + 0.881070i \(0.343176\pi\)
\(942\) 0 0
\(943\) 4.72293e7i 1.72955i
\(944\) 2.36627e6 0.0864240
\(945\) 0 0
\(946\) 1.59546e7 0.579638
\(947\) 3.15439e7i 1.14299i −0.820607 0.571493i \(-0.806364\pi\)
0.820607 0.571493i \(-0.193636\pi\)
\(948\) 0 0
\(949\) −6.91692e6 −0.249314
\(950\) 294627. 0.0105917
\(951\) 0 0
\(952\) 3.67731e6 + 1.32107e7i 0.131504 + 0.472425i
\(953\) 4.31186e7i 1.53792i −0.639299 0.768958i \(-0.720775\pi\)
0.639299 0.768958i \(-0.279225\pi\)
\(954\) 0 0
\(955\) 1.21137e6i 0.0429802i
\(956\) 1.04875e7i 0.371131i
\(957\) 0 0
\(958\) 1.72423e6i 0.0606989i
\(959\) 7.58200e6 + 2.72382e7i 0.266218 + 0.956382i
\(960\) 0 0
\(961\) −1.14210e7 −0.398930
\(962\) 8.61927e6 0.300284
\(963\) 0 0
\(964\) 6.69192e6i 0.231930i
\(965\) 5.09250e6 0.176041
\(966\) 0 0
\(967\) 1.47439e7 0.507044 0.253522 0.967330i \(-0.418411\pi\)
0.253522 + 0.967330i \(0.418411\pi\)
\(968\) 6.27758e6i 0.215330i
\(969\) 0 0
\(970\) 2.40791e6 0.0821696
\(971\) −7.88048e6 −0.268228 −0.134114 0.990966i \(-0.542819\pi\)
−0.134114 + 0.990966i \(0.542819\pi\)
\(972\) 0 0
\(973\) −1.41672e7 5.08952e7i −0.479734 1.72343i
\(974\) 1.78774e7i 0.603820i
\(975\) 0 0
\(976\) 5.02919e6i 0.168995i
\(977\) 3.16243e7i 1.05995i −0.848014 0.529974i \(-0.822202\pi\)
0.848014 0.529974i \(-0.177798\pi\)
\(978\) 0 0
\(979\) 1.44889e7i 0.483147i
\(980\) −5.75590e6 + 3.47356e6i −0.191447 + 0.115534i
\(981\) 0 0
\(982\) 3.49021e7 1.15498
\(983\) 2.88301e7 0.951618 0.475809 0.879549i \(-0.342155\pi\)
0.475809 + 0.879549i \(0.342155\pi\)
\(984\) 0 0
\(985\) 1.90488e7i 0.625570i
\(986\) 7.75227e6 0.253943
\(987\) 0 0
\(988\) 484868. 0.0158027
\(989\) 5.13241e7i 1.66852i
\(990\) 0 0
\(991\) −4.63270e6 −0.149848 −0.0749238 0.997189i \(-0.523871\pi\)
−0.0749238 + 0.997189i \(0.523871\pi\)
\(992\) 6.48041e6 0.209085
\(993\) 0 0
\(994\) −1.81858e7 + 5.06220e6i −0.583805 + 0.162507i
\(995\) 2.07094e7i 0.663148i
\(996\) 0 0
\(997\) 2.04363e7i 0.651125i 0.945521 + 0.325562i \(0.105554\pi\)
−0.945521 + 0.325562i \(0.894446\pi\)
\(998\) 1.75627e7i 0.558169i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.6.b.b.251.1 yes 24
3.2 odd 2 630.6.b.a.251.13 yes 24
7.6 odd 2 630.6.b.a.251.1 24
21.20 even 2 inner 630.6.b.b.251.13 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.6.b.a.251.1 24 7.6 odd 2
630.6.b.a.251.13 yes 24 3.2 odd 2
630.6.b.b.251.1 yes 24 1.1 even 1 trivial
630.6.b.b.251.13 yes 24 21.20 even 2 inner