Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [630,6,Mod(251,630)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(630, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("630.251");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 630.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(101.041806482\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
251.1 | − | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | −124.893 | + | 34.7652i | 64.0000i | 0 | − | 100.000i | ||||||||||||||
251.2 | − | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | −121.533 | − | 45.1314i | 64.0000i | 0 | − | 100.000i | ||||||||||||||
251.3 | − | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | −113.004 | − | 63.5388i | 64.0000i | 0 | − | 100.000i | ||||||||||||||
251.4 | − | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | −82.3791 | + | 100.103i | 64.0000i | 0 | − | 100.000i | ||||||||||||||
251.5 | − | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | −43.9610 | − | 121.961i | 64.0000i | 0 | − | 100.000i | ||||||||||||||
251.6 | − | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | −21.7464 | − | 127.805i | 64.0000i | 0 | − | 100.000i | ||||||||||||||
251.7 | − | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | 0.790322 | + | 129.639i | 64.0000i | 0 | − | 100.000i | ||||||||||||||
251.8 | − | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | 36.2176 | − | 124.480i | 64.0000i | 0 | − | 100.000i | ||||||||||||||
251.9 | − | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | 52.2976 | + | 118.625i | 64.0000i | 0 | − | 100.000i | ||||||||||||||
251.10 | − | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | 67.1371 | + | 110.904i | 64.0000i | 0 | − | 100.000i | ||||||||||||||
251.11 | − | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | 125.323 | − | 33.1837i | 64.0000i | 0 | − | 100.000i | ||||||||||||||
251.12 | − | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | 127.751 | + | 22.0627i | 64.0000i | 0 | − | 100.000i | ||||||||||||||
251.13 | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | −124.893 | − | 34.7652i | − | 64.0000i | 0 | 100.000i | |||||||||||||||
251.14 | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | −121.533 | + | 45.1314i | − | 64.0000i | 0 | 100.000i | |||||||||||||||
251.15 | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | −113.004 | + | 63.5388i | − | 64.0000i | 0 | 100.000i | |||||||||||||||
251.16 | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | −82.3791 | − | 100.103i | − | 64.0000i | 0 | 100.000i | |||||||||||||||
251.17 | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | −43.9610 | + | 121.961i | − | 64.0000i | 0 | 100.000i | |||||||||||||||
251.18 | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | −21.7464 | + | 127.805i | − | 64.0000i | 0 | 100.000i | |||||||||||||||
251.19 | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | 0.790322 | − | 129.639i | − | 64.0000i | 0 | 100.000i | |||||||||||||||
251.20 | 4.00000i | 0 | −16.0000 | 25.0000 | 0 | 36.2176 | + | 124.480i | − | 64.0000i | 0 | 100.000i | |||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
21.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 630.6.b.b | yes | 24 |
3.b | odd | 2 | 1 | 630.6.b.a | ✓ | 24 | |
7.b | odd | 2 | 1 | 630.6.b.a | ✓ | 24 | |
21.c | even | 2 | 1 | inner | 630.6.b.b | yes | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
630.6.b.a | ✓ | 24 | 3.b | odd | 2 | 1 | |
630.6.b.a | ✓ | 24 | 7.b | odd | 2 | 1 | |
630.6.b.b | yes | 24 | 1.a | even | 1 | 1 | trivial |
630.6.b.b | yes | 24 | 21.c | even | 2 | 1 | inner |