L(s) = 1 | + 4i·2-s − 16·4-s + (−10 + 55i)5-s + 49i·7-s − 64i·8-s + (−220 − 40i)10-s + 175·11-s − 999i·13-s − 196·14-s + 256·16-s + 1.83e3i·17-s + 1.30e3·19-s + (160 − 880i)20-s + 700i·22-s + 4.19e3i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (−0.178 + 0.983i)5-s + 0.377i·7-s − 0.353i·8-s + (−0.695 − 0.126i)10-s + 0.436·11-s − 1.63i·13-s − 0.267·14-s + 0.250·16-s + 1.53i·17-s + 0.831·19-s + (0.0894 − 0.491i)20-s + 0.308i·22-s + 1.65i·23-s + ⋯ |
Λ(s)=(=(630s/2ΓC(s)L(s)(−0.178+0.983i)Λ(6−s)
Λ(s)=(=(630s/2ΓC(s+5/2)L(s)(−0.178+0.983i)Λ(1−s)
Degree: |
2 |
Conductor: |
630
= 2⋅32⋅5⋅7
|
Sign: |
−0.178+0.983i
|
Analytic conductor: |
101.041 |
Root analytic conductor: |
10.0519 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ630(379,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 630, ( :5/2), −0.178+0.983i)
|
Particular Values
L(3) |
≈ |
0.3791360521 |
L(21) |
≈ |
0.3791360521 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4iT |
| 3 | 1 |
| 5 | 1+(10−55i)T |
| 7 | 1−49iT |
good | 11 | 1−175T+1.61e5T2 |
| 13 | 1+999iT−3.71e5T2 |
| 17 | 1−1.83e3iT−1.41e6T2 |
| 19 | 1−1.30e3T+2.47e6T2 |
| 23 | 1−4.19e3iT−6.43e6T2 |
| 29 | 1+981T+2.05e7T2 |
| 31 | 1+4.51e3T+2.86e7T2 |
| 37 | 1−578iT−6.93e7T2 |
| 41 | 1+1.95e4T+1.15e8T2 |
| 43 | 1−1.02e4iT−1.47e8T2 |
| 47 | 1+2.56e4iT−2.29e8T2 |
| 53 | 1−2.98e4iT−4.18e8T2 |
| 59 | 1−1.35e3T+7.14e8T2 |
| 61 | 1+1.30e4T+8.44e8T2 |
| 67 | 1+3.30e4iT−1.35e9T2 |
| 71 | 1−2.19e4T+1.80e9T2 |
| 73 | 1−8.37e4iT−2.07e9T2 |
| 79 | 1−6.41e3T+3.07e9T2 |
| 83 | 1+7.32e3iT−3.93e9T2 |
| 89 | 1+8.08e4T+5.58e9T2 |
| 97 | 1+7.85e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.32649329937126826631450611010, −9.622367024040758668078703613659, −8.450745758242235071371774879490, −7.75625838617911555206903034974, −6.96780557869018409829727818627, −5.91348945131677205917222265841, −5.38017176341056693083815532636, −3.77833282633999984408914891542, −3.13729642734224738048804065976, −1.54670497090417014251526066946,
0.088866571507929971784595580389, 1.09974638512053633127854037312, 2.13435792778833599794957645534, 3.54721993927074358501300979625, 4.50300841856144636563315184418, 5.11191410971818362560157959415, 6.56698017196206863293800743598, 7.47860949992633766863685573132, 8.675682570444741274093642801523, 9.230230130493563012245875237305