Properties

Label 2-630-5.4-c5-0-6
Degree $2$
Conductor $630$
Sign $-0.178 + 0.983i$
Analytic cond. $101.041$
Root an. cond. $10.0519$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4i·2-s − 16·4-s + (−10 + 55i)5-s + 49i·7-s − 64i·8-s + (−220 − 40i)10-s + 175·11-s − 999i·13-s − 196·14-s + 256·16-s + 1.83e3i·17-s + 1.30e3·19-s + (160 − 880i)20-s + 700i·22-s + 4.19e3i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + (−0.178 + 0.983i)5-s + 0.377i·7-s − 0.353i·8-s + (−0.695 − 0.126i)10-s + 0.436·11-s − 1.63i·13-s − 0.267·14-s + 0.250·16-s + 1.53i·17-s + 0.831·19-s + (0.0894 − 0.491i)20-s + 0.308i·22-s + 1.65i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.178 + 0.983i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.178 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(630\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $-0.178 + 0.983i$
Analytic conductor: \(101.041\)
Root analytic conductor: \(10.0519\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{630} (379, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 630,\ (\ :5/2),\ -0.178 + 0.983i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.3791360521\)
\(L(\frac12)\) \(\approx\) \(0.3791360521\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4iT \)
3 \( 1 \)
5 \( 1 + (10 - 55i)T \)
7 \( 1 - 49iT \)
good11 \( 1 - 175T + 1.61e5T^{2} \)
13 \( 1 + 999iT - 3.71e5T^{2} \)
17 \( 1 - 1.83e3iT - 1.41e6T^{2} \)
19 \( 1 - 1.30e3T + 2.47e6T^{2} \)
23 \( 1 - 4.19e3iT - 6.43e6T^{2} \)
29 \( 1 + 981T + 2.05e7T^{2} \)
31 \( 1 + 4.51e3T + 2.86e7T^{2} \)
37 \( 1 - 578iT - 6.93e7T^{2} \)
41 \( 1 + 1.95e4T + 1.15e8T^{2} \)
43 \( 1 - 1.02e4iT - 1.47e8T^{2} \)
47 \( 1 + 2.56e4iT - 2.29e8T^{2} \)
53 \( 1 - 2.98e4iT - 4.18e8T^{2} \)
59 \( 1 - 1.35e3T + 7.14e8T^{2} \)
61 \( 1 + 1.30e4T + 8.44e8T^{2} \)
67 \( 1 + 3.30e4iT - 1.35e9T^{2} \)
71 \( 1 - 2.19e4T + 1.80e9T^{2} \)
73 \( 1 - 8.37e4iT - 2.07e9T^{2} \)
79 \( 1 - 6.41e3T + 3.07e9T^{2} \)
83 \( 1 + 7.32e3iT - 3.93e9T^{2} \)
89 \( 1 + 8.08e4T + 5.58e9T^{2} \)
97 \( 1 + 7.85e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.32649329937126826631450611010, −9.622367024040758668078703613659, −8.450745758242235071371774879490, −7.75625838617911555206903034974, −6.96780557869018409829727818627, −5.91348945131677205917222265841, −5.38017176341056693083815532636, −3.77833282633999984408914891542, −3.13729642734224738048804065976, −1.54670497090417014251526066946, 0.088866571507929971784595580389, 1.09974638512053633127854037312, 2.13435792778833599794957645534, 3.54721993927074358501300979625, 4.50300841856144636563315184418, 5.11191410971818362560157959415, 6.56698017196206863293800743598, 7.47860949992633766863685573132, 8.675682570444741274093642801523, 9.230230130493563012245875237305

Graph of the $Z$-function along the critical line