Properties

Label 630.6.g.a
Level $630$
Weight $6$
Character orbit 630.g
Analytic conductor $101.042$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,6,Mod(379,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.379");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 630.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(101.041806482\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 i q^{2} - 16 q^{4} + (55 i - 10) q^{5} + 49 i q^{7} - 64 i q^{8} + ( - 40 i - 220) q^{10} + 175 q^{11} - 999 i q^{13} - 196 q^{14} + 256 q^{16} + 1831 i q^{17} + 1308 q^{19} + ( - 880 i + 160) q^{20} + \cdots - 9604 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} - 20 q^{5} - 440 q^{10} + 350 q^{11} - 392 q^{14} + 512 q^{16} + 2616 q^{19} + 320 q^{20} - 5850 q^{25} + 7992 q^{26} - 1962 q^{29} - 9028 q^{31} - 14648 q^{34} - 5390 q^{35} + 7040 q^{40}+ \cdots - 26160 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
379.1
1.00000i
1.00000i
4.00000i 0 −16.0000 −10.0000 55.0000i 0 49.0000i 64.0000i 0 −220.000 + 40.0000i
379.2 4.00000i 0 −16.0000 −10.0000 + 55.0000i 0 49.0000i 64.0000i 0 −220.000 40.0000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 630.6.g.a 2
3.b odd 2 1 70.6.c.c 2
5.b even 2 1 inner 630.6.g.a 2
12.b even 2 1 560.6.g.c 2
15.d odd 2 1 70.6.c.c 2
15.e even 4 1 350.6.a.a 1
15.e even 4 1 350.6.a.m 1
60.h even 2 1 560.6.g.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.c.c 2 3.b odd 2 1
70.6.c.c 2 15.d odd 2 1
350.6.a.a 1 15.e even 4 1
350.6.a.m 1 15.e even 4 1
560.6.g.c 2 12.b even 2 1
560.6.g.c 2 60.h even 2 1
630.6.g.a 2 1.a even 1 1 trivial
630.6.g.a 2 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11} - 175 \) acting on \(S_{6}^{\mathrm{new}}(630, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 16 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 20T + 3125 \) Copy content Toggle raw display
$7$ \( T^{2} + 2401 \) Copy content Toggle raw display
$11$ \( (T - 175)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 998001 \) Copy content Toggle raw display
$17$ \( T^{2} + 3352561 \) Copy content Toggle raw display
$19$ \( (T - 1308)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 17556100 \) Copy content Toggle raw display
$29$ \( (T + 981)^{2} \) Copy content Toggle raw display
$31$ \( (T + 4514)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 334084 \) Copy content Toggle raw display
$41$ \( (T + 19526)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 105842944 \) Copy content Toggle raw display
$47$ \( T^{2} + 659821969 \) Copy content Toggle raw display
$53$ \( T^{2} + 892455876 \) Copy content Toggle raw display
$59$ \( (T - 1354)^{2} \) Copy content Toggle raw display
$61$ \( (T + 13012)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 1090716676 \) Copy content Toggle raw display
$71$ \( (T - 21960)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 7019423524 \) Copy content Toggle raw display
$79$ \( (T - 6417)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 53640976 \) Copy content Toggle raw display
$89$ \( (T + 80836)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 6174030625 \) Copy content Toggle raw display
show more
show less