L(s) = 1 | + (−0.707 − 1.22i)2-s + (0.707 − 1.22i)3-s + (−2.20 − 3.82i)5-s − 2·6-s − 2.82·8-s + (0.500 + 0.866i)9-s + (−3.12 + 5.40i)10-s + (2.12 − 3.67i)11-s − 13-s − 6.24·15-s + (2.00 + 3.46i)16-s + (0.707 − 1.22i)17-s + (0.707 − 1.22i)18-s + (−0.621 − 1.07i)19-s − 6·22-s + (0.0857 + 0.148i)23-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.866i)2-s + (0.408 − 0.707i)3-s + (−0.987 − 1.70i)5-s − 0.816·6-s − 0.999·8-s + (0.166 + 0.288i)9-s + (−0.987 + 1.70i)10-s + (0.639 − 1.10i)11-s − 0.277·13-s − 1.61·15-s + (0.500 + 0.866i)16-s + (0.171 − 0.297i)17-s + (0.166 − 0.288i)18-s + (−0.142 − 0.246i)19-s − 1.27·22-s + (0.0178 + 0.0309i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.435477 + 0.878461i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.435477 + 0.878461i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + (0.707 + 1.22i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.707 + 1.22i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (2.20 + 3.82i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.12 + 3.67i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.707 + 1.22i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.621 + 1.07i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.0857 - 0.148i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 5.82T + 29T^{2} \) |
| 31 | \( 1 + (-2.62 + 4.54i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.12 - 5.40i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 3.17T + 41T^{2} \) |
| 43 | \( 1 + 5T + 43T^{2} \) |
| 47 | \( 1 + (2.20 + 3.82i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.91 + 5.04i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5.82 - 10.0i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3 + 5.19i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.24 - 2.15i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 1.07T + 71T^{2} \) |
| 73 | \( 1 + (-0.378 + 0.655i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.742 - 1.28i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 4.75T + 83T^{2} \) |
| 89 | \( 1 + (2.20 + 3.82i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 13.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.911611071121596212563920079693, −9.013031209766180282432741745332, −8.430769288923763980473233015533, −7.82033781167227163561025773279, −6.52703594860114808257873580176, −5.28555950376612400791514332397, −4.21938404747790318117721286375, −2.94196093513247449332513168048, −1.48219492623847272883945898622, −0.63924813676598929352401460753,
2.70969450347938496056195857568, 3.57050807769704823976783886776, 4.43785922933592142099961430160, 6.31221564393132257067580687216, 6.83678929496537229541908280635, 7.55185644320047912807710415014, 8.330664170087626497799734612701, 9.405894285816465110330029308166, 10.10564897225060019790625778978, 10.90560348233766062819855495140