L(s) = 1 | + (−0.707 − 1.22i)2-s + (0.707 − 1.22i)3-s + (−2.20 − 3.82i)5-s − 2·6-s − 2.82·8-s + (0.500 + 0.866i)9-s + (−3.12 + 5.40i)10-s + (2.12 − 3.67i)11-s − 13-s − 6.24·15-s + (2.00 + 3.46i)16-s + (0.707 − 1.22i)17-s + (0.707 − 1.22i)18-s + (−0.621 − 1.07i)19-s − 6·22-s + (0.0857 + 0.148i)23-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.866i)2-s + (0.408 − 0.707i)3-s + (−0.987 − 1.70i)5-s − 0.816·6-s − 0.999·8-s + (0.166 + 0.288i)9-s + (−0.987 + 1.70i)10-s + (0.639 − 1.10i)11-s − 0.277·13-s − 1.61·15-s + (0.500 + 0.866i)16-s + (0.171 − 0.297i)17-s + (0.166 − 0.288i)18-s + (−0.142 − 0.246i)19-s − 1.27·22-s + (0.0178 + 0.0309i)23-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.605−0.795i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.605−0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.605−0.795i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(508,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.605−0.795i)
|
Particular Values
L(1) |
≈ |
0.435477+0.878461i |
L(21) |
≈ |
0.435477+0.878461i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+T |
good | 2 | 1+(0.707+1.22i)T+(−1+1.73i)T2 |
| 3 | 1+(−0.707+1.22i)T+(−1.5−2.59i)T2 |
| 5 | 1+(2.20+3.82i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−2.12+3.67i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−0.707+1.22i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.621+1.07i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.0857−0.148i)T+(−11.5+19.9i)T2 |
| 29 | 1−5.82T+29T2 |
| 31 | 1+(−2.62+4.54i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−3.12−5.40i)T+(−18.5+32.0i)T2 |
| 41 | 1−3.17T+41T2 |
| 43 | 1+5T+43T2 |
| 47 | 1+(2.20+3.82i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−2.91+5.04i)T+(−26.5−45.8i)T2 |
| 59 | 1+(5.82−10.0i)T+(−29.5−51.0i)T2 |
| 61 | 1+(3+5.19i)T+(−30.5+52.8i)T2 |
| 67 | 1+(1.24−2.15i)T+(−33.5−58.0i)T2 |
| 71 | 1−1.07T+71T2 |
| 73 | 1+(−0.378+0.655i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−0.742−1.28i)T+(−39.5+68.4i)T2 |
| 83 | 1−4.75T+83T2 |
| 89 | 1+(2.20+3.82i)T+(−44.5+77.0i)T2 |
| 97 | 1+13.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.911611071121596212563920079693, −9.013031209766180282432741745332, −8.430769288923763980473233015533, −7.82033781167227163561025773279, −6.52703594860114808257873580176, −5.28555950376612400791514332397, −4.21938404747790318117721286375, −2.94196093513247449332513168048, −1.48219492623847272883945898622, −0.63924813676598929352401460753,
2.70969450347938496056195857568, 3.57050807769704823976783886776, 4.43785922933592142099961430160, 6.31221564393132257067580687216, 6.83678929496537229541908280635, 7.55185644320047912807710415014, 8.330664170087626497799734612701, 9.405894285816465110330029308166, 10.10564897225060019790625778978, 10.90560348233766062819855495140