Properties

Label 637.2.e.f
Level 637637
Weight 22
Character orbit 637.e
Analytic conductor 5.0865.086
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(79,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 637=7213 637 = 7^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 637.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.086470608765.08647060876
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β3+β1)q3+(3β2+β13)q52q62β3q8+(β2+1)q9+(3β3+2β23β1)q10+(3β3+3β1)q11++3β3q99+O(q100) q + \beta_1 q^{2} + (\beta_{3} + \beta_1) q^{3} + ( - 3 \beta_{2} + \beta_1 - 3) q^{5} - 2 q^{6} - 2 \beta_{3} q^{8} + (\beta_{2} + 1) q^{9} + ( - 3 \beta_{3} + 2 \beta_{2} - 3 \beta_1) q^{10} + (3 \beta_{3} + 3 \beta_1) q^{11}+ \cdots + 3 \beta_{3} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q6q58q6+2q94q104q138q15+8q16+6q1924q22+6q238q2412q25+12q29+12q30+2q3112q338q34+4q37+4q97+O(q100) 4 q - 6 q^{5} - 8 q^{6} + 2 q^{9} - 4 q^{10} - 4 q^{13} - 8 q^{15} + 8 q^{16} + 6 q^{19} - 24 q^{22} + 6 q^{23} - 8 q^{24} - 12 q^{25} + 12 q^{29} + 12 q^{30} + 2 q^{31} - 12 q^{33} - 8 q^{34} + 4 q^{37}+ \cdots - 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+2x2+4 x^{4} + 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/637Z)×\left(\mathbb{Z}/637\mathbb{Z}\right)^\times.

nn 197197 248248
χ(n)\chi(n) 11 1β2-1 - \beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
79.1
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i 0.707107 + 1.22474i 0 −2.20711 + 3.82282i −2.00000 0 −2.82843 0.500000 0.866025i −3.12132 5.40629i
79.2 0.707107 1.22474i −0.707107 1.22474i 0 −0.792893 + 1.37333i −2.00000 0 2.82843 0.500000 0.866025i 1.12132 + 1.94218i
508.1 −0.707107 1.22474i 0.707107 1.22474i 0 −2.20711 3.82282i −2.00000 0 −2.82843 0.500000 + 0.866025i −3.12132 + 5.40629i
508.2 0.707107 + 1.22474i −0.707107 + 1.22474i 0 −0.792893 1.37333i −2.00000 0 2.82843 0.500000 + 0.866025i 1.12132 1.94218i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 637.2.e.f 4
7.b odd 2 1 637.2.e.g 4
7.c even 3 1 91.2.a.c 2
7.c even 3 1 inner 637.2.e.f 4
7.d odd 6 1 637.2.a.g 2
7.d odd 6 1 637.2.e.g 4
21.g even 6 1 5733.2.a.s 2
21.h odd 6 1 819.2.a.h 2
28.g odd 6 1 1456.2.a.q 2
35.j even 6 1 2275.2.a.j 2
56.k odd 6 1 5824.2.a.bk 2
56.p even 6 1 5824.2.a.bl 2
91.r even 6 1 1183.2.a.d 2
91.s odd 6 1 8281.2.a.v 2
91.z odd 12 2 1183.2.c.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.a.c 2 7.c even 3 1
637.2.a.g 2 7.d odd 6 1
637.2.e.f 4 1.a even 1 1 trivial
637.2.e.f 4 7.c even 3 1 inner
637.2.e.g 4 7.b odd 2 1
637.2.e.g 4 7.d odd 6 1
819.2.a.h 2 21.h odd 6 1
1183.2.a.d 2 91.r even 6 1
1183.2.c.d 4 91.z odd 12 2
1456.2.a.q 2 28.g odd 6 1
2275.2.a.j 2 35.j even 6 1
5733.2.a.s 2 21.g even 6 1
5824.2.a.bk 2 56.k odd 6 1
5824.2.a.bl 2 56.p even 6 1
8281.2.a.v 2 91.s odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(637,[χ])S_{2}^{\mathrm{new}}(637, [\chi]):

T24+2T22+4 T_{2}^{4} + 2T_{2}^{2} + 4 Copy content Toggle raw display
T34+2T32+4 T_{3}^{4} + 2T_{3}^{2} + 4 Copy content Toggle raw display
T54+6T53+29T52+42T5+49 T_{5}^{4} + 6T_{5}^{3} + 29T_{5}^{2} + 42T_{5} + 49 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+2T2+4 T^{4} + 2T^{2} + 4 Copy content Toggle raw display
33 T4+2T2+4 T^{4} + 2T^{2} + 4 Copy content Toggle raw display
55 T4+6T3++49 T^{4} + 6 T^{3} + \cdots + 49 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4+18T2+324 T^{4} + 18T^{2} + 324 Copy content Toggle raw display
1313 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
1717 T4+2T2+4 T^{4} + 2T^{2} + 4 Copy content Toggle raw display
1919 T46T3++81 T^{4} - 6 T^{3} + \cdots + 81 Copy content Toggle raw display
2323 T46T3++1 T^{4} - 6 T^{3} + \cdots + 1 Copy content Toggle raw display
2929 (T26T+1)2 (T^{2} - 6 T + 1)^{2} Copy content Toggle raw display
3131 T42T3++289 T^{4} - 2 T^{3} + \cdots + 289 Copy content Toggle raw display
3737 T44T3++196 T^{4} - 4 T^{3} + \cdots + 196 Copy content Toggle raw display
4141 (T212T+28)2 (T^{2} - 12 T + 28)^{2} Copy content Toggle raw display
4343 (T+5)4 (T + 5)^{4} Copy content Toggle raw display
4747 T4+6T3++49 T^{4} + 6 T^{3} + \cdots + 49 Copy content Toggle raw display
5353 T46T3++1 T^{4} - 6 T^{3} + \cdots + 1 Copy content Toggle raw display
5959 T4+12T3++16 T^{4} + 12 T^{3} + \cdots + 16 Copy content Toggle raw display
6161 (T2+6T+36)2 (T^{2} + 6 T + 36)^{2} Copy content Toggle raw display
6767 T412T3++1296 T^{4} - 12 T^{3} + \cdots + 1296 Copy content Toggle raw display
7171 (T2+12T14)2 (T^{2} + 12 T - 14)^{2} Copy content Toggle raw display
7373 T410T3++49 T^{4} - 10 T^{3} + \cdots + 49 Copy content Toggle raw display
7979 T4+14T3++529 T^{4} + 14 T^{3} + \cdots + 529 Copy content Toggle raw display
8383 (T218T+63)2 (T^{2} - 18 T + 63)^{2} Copy content Toggle raw display
8989 T4+6T3++49 T^{4} + 6 T^{3} + \cdots + 49 Copy content Toggle raw display
9797 (T2+2T161)2 (T^{2} + 2 T - 161)^{2} Copy content Toggle raw display
show more
show less