Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [637,2,Mod(79,637)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(637, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("637.79");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 637.e (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 91) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
79.1 |
|
−0.707107 | + | 1.22474i | 0.707107 | + | 1.22474i | 0 | −2.20711 | + | 3.82282i | −2.00000 | 0 | −2.82843 | 0.500000 | − | 0.866025i | −3.12132 | − | 5.40629i | ||||||||||||||||||||
79.2 | 0.707107 | − | 1.22474i | −0.707107 | − | 1.22474i | 0 | −0.792893 | + | 1.37333i | −2.00000 | 0 | 2.82843 | 0.500000 | − | 0.866025i | 1.12132 | + | 1.94218i | |||||||||||||||||||||
508.1 | −0.707107 | − | 1.22474i | 0.707107 | − | 1.22474i | 0 | −2.20711 | − | 3.82282i | −2.00000 | 0 | −2.82843 | 0.500000 | + | 0.866025i | −3.12132 | + | 5.40629i | |||||||||||||||||||||
508.2 | 0.707107 | + | 1.22474i | −0.707107 | + | 1.22474i | 0 | −0.792893 | − | 1.37333i | −2.00000 | 0 | 2.82843 | 0.500000 | + | 0.866025i | 1.12132 | − | 1.94218i | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 637.2.e.f | 4 | |
7.b | odd | 2 | 1 | 637.2.e.g | 4 | ||
7.c | even | 3 | 1 | 91.2.a.c | ✓ | 2 | |
7.c | even | 3 | 1 | inner | 637.2.e.f | 4 | |
7.d | odd | 6 | 1 | 637.2.a.g | 2 | ||
7.d | odd | 6 | 1 | 637.2.e.g | 4 | ||
21.g | even | 6 | 1 | 5733.2.a.s | 2 | ||
21.h | odd | 6 | 1 | 819.2.a.h | 2 | ||
28.g | odd | 6 | 1 | 1456.2.a.q | 2 | ||
35.j | even | 6 | 1 | 2275.2.a.j | 2 | ||
56.k | odd | 6 | 1 | 5824.2.a.bk | 2 | ||
56.p | even | 6 | 1 | 5824.2.a.bl | 2 | ||
91.r | even | 6 | 1 | 1183.2.a.d | 2 | ||
91.s | odd | 6 | 1 | 8281.2.a.v | 2 | ||
91.z | odd | 12 | 2 | 1183.2.c.d | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
91.2.a.c | ✓ | 2 | 7.c | even | 3 | 1 | |
637.2.a.g | 2 | 7.d | odd | 6 | 1 | ||
637.2.e.f | 4 | 1.a | even | 1 | 1 | trivial | |
637.2.e.f | 4 | 7.c | even | 3 | 1 | inner | |
637.2.e.g | 4 | 7.b | odd | 2 | 1 | ||
637.2.e.g | 4 | 7.d | odd | 6 | 1 | ||
819.2.a.h | 2 | 21.h | odd | 6 | 1 | ||
1183.2.a.d | 2 | 91.r | even | 6 | 1 | ||
1183.2.c.d | 4 | 91.z | odd | 12 | 2 | ||
1456.2.a.q | 2 | 28.g | odd | 6 | 1 | ||
2275.2.a.j | 2 | 35.j | even | 6 | 1 | ||
5733.2.a.s | 2 | 21.g | even | 6 | 1 | ||
5824.2.a.bk | 2 | 56.k | odd | 6 | 1 | ||
5824.2.a.bl | 2 | 56.p | even | 6 | 1 | ||
8281.2.a.v | 2 | 91.s | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|