Properties

Label 637.2.e.f
Level $637$
Weight $2$
Character orbit 637.e
Analytic conductor $5.086$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(79,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} + \beta_1) q^{3} + ( - 3 \beta_{2} + \beta_1 - 3) q^{5} - 2 q^{6} - 2 \beta_{3} q^{8} + (\beta_{2} + 1) q^{9} + ( - 3 \beta_{3} + 2 \beta_{2} - 3 \beta_1) q^{10} + (3 \beta_{3} + 3 \beta_1) q^{11}+ \cdots + 3 \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{5} - 8 q^{6} + 2 q^{9} - 4 q^{10} - 4 q^{13} - 8 q^{15} + 8 q^{16} + 6 q^{19} - 24 q^{22} + 6 q^{23} - 8 q^{24} - 12 q^{25} + 12 q^{29} + 12 q^{30} + 2 q^{31} - 12 q^{33} - 8 q^{34} + 4 q^{37}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(1\) \(-1 - \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i 0.707107 + 1.22474i 0 −2.20711 + 3.82282i −2.00000 0 −2.82843 0.500000 0.866025i −3.12132 5.40629i
79.2 0.707107 1.22474i −0.707107 1.22474i 0 −0.792893 + 1.37333i −2.00000 0 2.82843 0.500000 0.866025i 1.12132 + 1.94218i
508.1 −0.707107 1.22474i 0.707107 1.22474i 0 −2.20711 3.82282i −2.00000 0 −2.82843 0.500000 + 0.866025i −3.12132 + 5.40629i
508.2 0.707107 + 1.22474i −0.707107 + 1.22474i 0 −0.792893 1.37333i −2.00000 0 2.82843 0.500000 + 0.866025i 1.12132 1.94218i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 637.2.e.f 4
7.b odd 2 1 637.2.e.g 4
7.c even 3 1 91.2.a.c 2
7.c even 3 1 inner 637.2.e.f 4
7.d odd 6 1 637.2.a.g 2
7.d odd 6 1 637.2.e.g 4
21.g even 6 1 5733.2.a.s 2
21.h odd 6 1 819.2.a.h 2
28.g odd 6 1 1456.2.a.q 2
35.j even 6 1 2275.2.a.j 2
56.k odd 6 1 5824.2.a.bk 2
56.p even 6 1 5824.2.a.bl 2
91.r even 6 1 1183.2.a.d 2
91.s odd 6 1 8281.2.a.v 2
91.z odd 12 2 1183.2.c.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.a.c 2 7.c even 3 1
637.2.a.g 2 7.d odd 6 1
637.2.e.f 4 1.a even 1 1 trivial
637.2.e.f 4 7.c even 3 1 inner
637.2.e.g 4 7.b odd 2 1
637.2.e.g 4 7.d odd 6 1
819.2.a.h 2 21.h odd 6 1
1183.2.a.d 2 91.r even 6 1
1183.2.c.d 4 91.z odd 12 2
1456.2.a.q 2 28.g odd 6 1
2275.2.a.j 2 35.j even 6 1
5733.2.a.s 2 21.g even 6 1
5824.2.a.bk 2 56.k odd 6 1
5824.2.a.bl 2 56.p even 6 1
8281.2.a.v 2 91.s odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(637, [\chi])\):

\( T_{2}^{4} + 2T_{2}^{2} + 4 \) Copy content Toggle raw display
\( T_{3}^{4} + 2T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{5}^{4} + 6T_{5}^{3} + 29T_{5}^{2} + 42T_{5} + 49 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{4} + 6 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 18T^{2} + 324 \) Copy content Toggle raw display
$13$ \( (T + 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$19$ \( T^{4} - 6 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$23$ \( T^{4} - 6 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( (T^{2} - 6 T + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 2 T^{3} + \cdots + 289 \) Copy content Toggle raw display
$37$ \( T^{4} - 4 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$41$ \( (T^{2} - 12 T + 28)^{2} \) Copy content Toggle raw display
$43$ \( (T + 5)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 6 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$53$ \( T^{4} - 6 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{4} + 12 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$61$ \( (T^{2} + 6 T + 36)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 12 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$71$ \( (T^{2} + 12 T - 14)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 10 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$79$ \( T^{4} + 14 T^{3} + \cdots + 529 \) Copy content Toggle raw display
$83$ \( (T^{2} - 18 T + 63)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 6 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$97$ \( (T^{2} + 2 T - 161)^{2} \) Copy content Toggle raw display
show more
show less