Properties

Label 5824.2.a.bl
Level $5824$
Weight $2$
Character orbit 5824.a
Self dual yes
Analytic conductor $46.505$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5824,2,Mod(1,5824)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5824, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5824.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5824 = 2^{6} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5824.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.5048741372\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} + ( - \beta - 3) q^{5} + q^{7} - q^{9} + 3 \beta q^{11} + q^{13} + ( - 3 \beta - 2) q^{15} - \beta q^{17} + ( - 3 \beta + 3) q^{19} + \beta q^{21} + (2 \beta - 3) q^{23} + (6 \beta + 6) q^{25} + \cdots - 3 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5} + 2 q^{7} - 2 q^{9} + 2 q^{13} - 4 q^{15} + 6 q^{19} - 6 q^{23} + 12 q^{25} - 6 q^{29} - 2 q^{31} + 12 q^{33} - 6 q^{35} + 4 q^{37} + 12 q^{41} + 10 q^{43} + 6 q^{45} + 6 q^{47} + 2 q^{49}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −1.41421 0 −1.58579 0 1.00000 0 −1.00000 0
1.2 0 1.41421 0 −4.41421 0 1.00000 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5824.2.a.bl 2
4.b odd 2 1 5824.2.a.bk 2
8.b even 2 1 91.2.a.c 2
8.d odd 2 1 1456.2.a.q 2
24.h odd 2 1 819.2.a.h 2
40.f even 2 1 2275.2.a.j 2
56.h odd 2 1 637.2.a.g 2
56.j odd 6 2 637.2.e.g 4
56.p even 6 2 637.2.e.f 4
104.e even 2 1 1183.2.a.d 2
104.j odd 4 2 1183.2.c.d 4
168.i even 2 1 5733.2.a.s 2
728.l odd 2 1 8281.2.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.a.c 2 8.b even 2 1
637.2.a.g 2 56.h odd 2 1
637.2.e.f 4 56.p even 6 2
637.2.e.g 4 56.j odd 6 2
819.2.a.h 2 24.h odd 2 1
1183.2.a.d 2 104.e even 2 1
1183.2.c.d 4 104.j odd 4 2
1456.2.a.q 2 8.d odd 2 1
2275.2.a.j 2 40.f even 2 1
5733.2.a.s 2 168.i even 2 1
5824.2.a.bk 2 4.b odd 2 1
5824.2.a.bl 2 1.a even 1 1 trivial
8281.2.a.v 2 728.l odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5824))\):

\( T_{3}^{2} - 2 \) Copy content Toggle raw display
\( T_{5}^{2} + 6T_{5} + 7 \) Copy content Toggle raw display
\( T_{11}^{2} - 18 \) Copy content Toggle raw display
\( T_{17}^{2} - 2 \) Copy content Toggle raw display
\( T_{19}^{2} - 6T_{19} - 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2 \) Copy content Toggle raw display
$5$ \( T^{2} + 6T + 7 \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 18 \) Copy content Toggle raw display
$13$ \( (T - 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2 \) Copy content Toggle raw display
$19$ \( T^{2} - 6T - 9 \) Copy content Toggle raw display
$23$ \( T^{2} + 6T + 1 \) Copy content Toggle raw display
$29$ \( T^{2} + 6T + 1 \) Copy content Toggle raw display
$31$ \( T^{2} + 2T - 17 \) Copy content Toggle raw display
$37$ \( T^{2} - 4T - 14 \) Copy content Toggle raw display
$41$ \( T^{2} - 12T + 28 \) Copy content Toggle raw display
$43$ \( (T - 5)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 6T + 7 \) Copy content Toggle raw display
$53$ \( T^{2} - 6T + 1 \) Copy content Toggle raw display
$59$ \( T^{2} + 12T + 4 \) Copy content Toggle raw display
$61$ \( (T + 6)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 12T - 36 \) Copy content Toggle raw display
$71$ \( T^{2} + 12T - 14 \) Copy content Toggle raw display
$73$ \( T^{2} + 10T + 7 \) Copy content Toggle raw display
$79$ \( T^{2} - 14T - 23 \) Copy content Toggle raw display
$83$ \( T^{2} + 18T + 63 \) Copy content Toggle raw display
$89$ \( T^{2} - 6T + 7 \) Copy content Toggle raw display
$97$ \( T^{2} + 2T - 161 \) Copy content Toggle raw display
show more
show less