L(s) = 1 | + (0.707 + 1.22i)2-s + (−0.707 + 1.22i)3-s + (−0.792 − 1.37i)5-s − 2·6-s + 2.82·8-s + (0.500 + 0.866i)9-s + (1.12 − 1.94i)10-s + (−2.12 + 3.67i)11-s − 13-s + 2.24·15-s + (2.00 + 3.46i)16-s + (−0.707 + 1.22i)17-s + (−0.707 + 1.22i)18-s + (3.62 + 6.27i)19-s − 6·22-s + (2.91 + 5.04i)23-s + ⋯ |
L(s) = 1 | + (0.499 + 0.866i)2-s + (−0.408 + 0.707i)3-s + (−0.354 − 0.614i)5-s − 0.816·6-s + 0.999·8-s + (0.166 + 0.288i)9-s + (0.354 − 0.614i)10-s + (−0.639 + 1.10i)11-s − 0.277·13-s + 0.579·15-s + (0.500 + 0.866i)16-s + (−0.171 + 0.297i)17-s + (−0.166 + 0.288i)18-s + (0.830 + 1.43i)19-s − 1.27·22-s + (0.607 + 1.05i)23-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.605−0.795i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.605−0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.605−0.795i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(508,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.605−0.795i)
|
Particular Values
L(1) |
≈ |
0.729232+1.47103i |
L(21) |
≈ |
0.729232+1.47103i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+T |
good | 2 | 1+(−0.707−1.22i)T+(−1+1.73i)T2 |
| 3 | 1+(0.707−1.22i)T+(−1.5−2.59i)T2 |
| 5 | 1+(0.792+1.37i)T+(−2.5+4.33i)T2 |
| 11 | 1+(2.12−3.67i)T+(−5.5−9.52i)T2 |
| 17 | 1+(0.707−1.22i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3.62−6.27i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−2.91−5.04i)T+(−11.5+19.9i)T2 |
| 29 | 1−0.171T+29T2 |
| 31 | 1+(1.62−2.80i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1.12+1.94i)T+(−18.5+32.0i)T2 |
| 41 | 1−8.82T+41T2 |
| 43 | 1+5T+43T2 |
| 47 | 1+(0.792+1.37i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−0.0857+0.148i)T+(−26.5−45.8i)T2 |
| 59 | 1+(0.171−0.297i)T+(−29.5−51.0i)T2 |
| 61 | 1+(3+5.19i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−7.24+12.5i)T+(−33.5−58.0i)T2 |
| 71 | 1+13.0T+71T2 |
| 73 | 1+(−4.62+8.00i)T+(−36.5−63.2i)T2 |
| 79 | 1+(7.74+13.4i)T+(−39.5+68.4i)T2 |
| 83 | 1−13.2T+83T2 |
| 89 | 1+(0.792+1.37i)T+(−44.5+77.0i)T2 |
| 97 | 1−11.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.64992905560698935619700396110, −10.16252421522331386812271899411, −9.249022963004694096332893213636, −7.78062353921991098753323442338, −7.52155129495034149648520088515, −6.20273345457375572043241372900, −5.14020520497608031039897388308, −4.85699648190543861347734672917, −3.79209419023328486459927886650, −1.75582133398507214641648096402,
0.843035439869330365332228107079, 2.57718109392760885401424828131, 3.25519199638047478425067199214, 4.51526380296329360908899372453, 5.65125628102944348544439401092, 6.93834892555442160158262301177, 7.30138030968960101635145609711, 8.438587336969318124915373250078, 9.637639951544146917254813861506, 10.81005655927754517179494615289