Properties

Label 2-637-7.4-c1-0-8
Degree 22
Conductor 637637
Sign 0.6050.795i-0.605 - 0.795i
Analytic cond. 5.086475.08647
Root an. cond. 2.255322.25532
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 1.22i)2-s + (−0.707 + 1.22i)3-s + (−0.792 − 1.37i)5-s − 2·6-s + 2.82·8-s + (0.500 + 0.866i)9-s + (1.12 − 1.94i)10-s + (−2.12 + 3.67i)11-s − 13-s + 2.24·15-s + (2.00 + 3.46i)16-s + (−0.707 + 1.22i)17-s + (−0.707 + 1.22i)18-s + (3.62 + 6.27i)19-s − 6·22-s + (2.91 + 5.04i)23-s + ⋯
L(s)  = 1  + (0.499 + 0.866i)2-s + (−0.408 + 0.707i)3-s + (−0.354 − 0.614i)5-s − 0.816·6-s + 0.999·8-s + (0.166 + 0.288i)9-s + (0.354 − 0.614i)10-s + (−0.639 + 1.10i)11-s − 0.277·13-s + 0.579·15-s + (0.500 + 0.866i)16-s + (−0.171 + 0.297i)17-s + (−0.166 + 0.288i)18-s + (0.830 + 1.43i)19-s − 1.27·22-s + (0.607 + 1.05i)23-s + ⋯

Functional equation

Λ(s)=(637s/2ΓC(s)L(s)=((0.6050.795i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(637s/2ΓC(s+1/2)L(s)=((0.6050.795i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 637637    =    72137^{2} \cdot 13
Sign: 0.6050.795i-0.605 - 0.795i
Analytic conductor: 5.086475.08647
Root analytic conductor: 2.255322.25532
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ637(508,)\chi_{637} (508, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 637, ( :1/2), 0.6050.795i)(2,\ 637,\ (\ :1/2),\ -0.605 - 0.795i)

Particular Values

L(1)L(1) \approx 0.729232+1.47103i0.729232 + 1.47103i
L(12)L(\frac12) \approx 0.729232+1.47103i0.729232 + 1.47103i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
13 1+T 1 + T
good2 1+(0.7071.22i)T+(1+1.73i)T2 1 + (-0.707 - 1.22i)T + (-1 + 1.73i)T^{2}
3 1+(0.7071.22i)T+(1.52.59i)T2 1 + (0.707 - 1.22i)T + (-1.5 - 2.59i)T^{2}
5 1+(0.792+1.37i)T+(2.5+4.33i)T2 1 + (0.792 + 1.37i)T + (-2.5 + 4.33i)T^{2}
11 1+(2.123.67i)T+(5.59.52i)T2 1 + (2.12 - 3.67i)T + (-5.5 - 9.52i)T^{2}
17 1+(0.7071.22i)T+(8.514.7i)T2 1 + (0.707 - 1.22i)T + (-8.5 - 14.7i)T^{2}
19 1+(3.626.27i)T+(9.5+16.4i)T2 1 + (-3.62 - 6.27i)T + (-9.5 + 16.4i)T^{2}
23 1+(2.915.04i)T+(11.5+19.9i)T2 1 + (-2.91 - 5.04i)T + (-11.5 + 19.9i)T^{2}
29 10.171T+29T2 1 - 0.171T + 29T^{2}
31 1+(1.622.80i)T+(15.526.8i)T2 1 + (1.62 - 2.80i)T + (-15.5 - 26.8i)T^{2}
37 1+(1.12+1.94i)T+(18.5+32.0i)T2 1 + (1.12 + 1.94i)T + (-18.5 + 32.0i)T^{2}
41 18.82T+41T2 1 - 8.82T + 41T^{2}
43 1+5T+43T2 1 + 5T + 43T^{2}
47 1+(0.792+1.37i)T+(23.5+40.7i)T2 1 + (0.792 + 1.37i)T + (-23.5 + 40.7i)T^{2}
53 1+(0.0857+0.148i)T+(26.545.8i)T2 1 + (-0.0857 + 0.148i)T + (-26.5 - 45.8i)T^{2}
59 1+(0.1710.297i)T+(29.551.0i)T2 1 + (0.171 - 0.297i)T + (-29.5 - 51.0i)T^{2}
61 1+(3+5.19i)T+(30.5+52.8i)T2 1 + (3 + 5.19i)T + (-30.5 + 52.8i)T^{2}
67 1+(7.24+12.5i)T+(33.558.0i)T2 1 + (-7.24 + 12.5i)T + (-33.5 - 58.0i)T^{2}
71 1+13.0T+71T2 1 + 13.0T + 71T^{2}
73 1+(4.62+8.00i)T+(36.563.2i)T2 1 + (-4.62 + 8.00i)T + (-36.5 - 63.2i)T^{2}
79 1+(7.74+13.4i)T+(39.5+68.4i)T2 1 + (7.74 + 13.4i)T + (-39.5 + 68.4i)T^{2}
83 113.2T+83T2 1 - 13.2T + 83T^{2}
89 1+(0.792+1.37i)T+(44.5+77.0i)T2 1 + (0.792 + 1.37i)T + (-44.5 + 77.0i)T^{2}
97 111.7T+97T2 1 - 11.7T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.64992905560698935619700396110, −10.16252421522331386812271899411, −9.249022963004694096332893213636, −7.78062353921991098753323442338, −7.52155129495034149648520088515, −6.20273345457375572043241372900, −5.14020520497608031039897388308, −4.85699648190543861347734672917, −3.79209419023328486459927886650, −1.75582133398507214641648096402, 0.843035439869330365332228107079, 2.57718109392760885401424828131, 3.25519199638047478425067199214, 4.51526380296329360908899372453, 5.65125628102944348544439401092, 6.93834892555442160158262301177, 7.30138030968960101635145609711, 8.438587336969318124915373250078, 9.637639951544146917254813861506, 10.81005655927754517179494615289

Graph of the ZZ-function along the critical line